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Abstract

The response of delaminated composite plates to compressive in-plane loads
was investigated. The delaminated region may be either circular or elliptical, and
may be located between any two plies of the laminate. For elliptical delaminations,
the axes of the ellipse may be arbitrarily oriented with respect to the applied loads.
A model was developed that describes the stresses, strains, and deformation of the
sublaminate created by the delamination. The mathematical model is based on a
two dimensional nonlinear plate theory that includes the effects of transverse shear
deformation. The model takes into account thermal and moisture induced strains,
transverse pressures acting on the sublaminate, and contact between the sublami-
nate and plate. The solution technique used is the Ritz method.- A computationally
efficient computer implementation of the model was developed. The code can be
used to predict the nonlinear load-strain behavior of the sublaminate including the
buckling load, postbuckling behavior, and the onset of delamination growth. The
accuracy of the cpdé was evaluated by comparing the model results to benchmark
analytical solutions.

A series of experiments was conducted on Fiberite T300/976 graphite/epoxy
laminates bonded to an aluminum honeycomb core forming a sandwich panel. Ei-
ther circles or ellipses made from Teflon film were embedded in the laminates, sim-
ulating the presence of a delamination. Each specimen was loaded in compression
and the strain history of the sublaminate was recorded far into the postbuckling
regime. The extent of delamination growth was evaluated by C-scan examination
of each specimen. The experimental data were compared to code predictions. The
code was found to describe the data with reasonable accuracy.

A sensitivity study examined the relative importance of various material prop-
erties, the delamination dimensions, the contact model, the transverse pressure
differential, the critical strain energy release rate, and the relative growth direc-
tion on the buckling load, the postbuckling behavior, and the growth load of the

sublaminate.
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Chapter 1

Introduction

Fiber-reinforced organic matrix composite materials may contain delamina-
tions introduced, for example, by manufacturing defects or impact damage. When
subjected to compressive in-plane loads, the delaminated region may first buckle
. and then grow in size. Either of these occurrences may significantly limit the useful-
ness of the composite plate. Therefore, to utilize the many inherent advantages of
composite materials, the behavior of delaminations must be fully understood. This
investigation addresses this problem, and specifically seeks to establish a model
which predicts the buckling and postbuckling growth behavior of delaminations in
composite plates subjected to in-plane compressive and shear loads.

Owing to the significance of the problem, several investigators have proposed
models describing the behavior of delaminated plates under compressive loading.
The buckling and growth of through-width delaminations in plate strips have been
analyzed by Chai et al. [1], Yin et al. [2], Simitses et al. [3], Gillespie and Pipes
(4], Wang et al. [5,6], Sallam and Simitses [7], Williams et al. [8], El-Senussi and
Webber [9], Vizzini and Lagace [10], Yin {11}, and Kardomateas [12]. The buckling
and growth of circular delaminations in isotropic plates under radial loads have

been investigated by Bottega and Maewal [13], Yin and Fei [14], and Brune [15)].

In addition to these simple geometries, the behavior of plates containing rec-

1



Chapter 1: Introduction 2

tangular delaminations have been analyzed by Konishi [16] and Jones et al. [17],
while plates containing elliptical delaminations have been investigated by Konishi
[16], Chai and Babcock [18], Kassapoglou [19], Shivakumar and Whitcomb [20], and
Whitcomb (21, 22]. In all but one of these analyses, the major axes of the rectangle
or ellipse were assumed to be aligned with the direction of the compressive load.
The one exception is the analysis of Shivakumar and Whitcomb [20], which assumed
an arbitrary orientation for an elliptical delamination with respect to the applied
load. However, Shivakumar and Whitcomb calculated only buckling loads and did
not consider postbuckling deformation or growth.

It appears that no model exists for predicting the buckling, postbuckling be-
havior, and growth of: (a) circular delaminations or elliptical delaminations with
axes arbitrarily oriented with respect to the applied in-plane loads, and (b) de-
laminations located between any two plies of the composite plate. Therefore, the
primary goal of this investigation was to develop a model capable of addressing this
more general problem of delamination in a composite plate.

In developing the model, an additional objective was to make the model readily
useable in engineering practice. Substantial effort was made to keep the analysis
simple and straightforward, to develop a computer implementation of the model
that was computationally efficient, and to incorporate a user-friendly interface for
the program so that meaningful results could readily be obtained.

Finally, to firmly establish the credibility of the model, a series of experiments
on graphite-epoxy face sheeted aluminum honeycomb sandwich panels containing
embedded delaminations was conducted. Strain histories were measured far into the
postbuckling regime, and the data were compared to the analytical results, verifying
the validity of the model.



Chapter 2

Problem Statement

Consider a multilayer laminated composite plate. The plate may be a “solid”
laminate or a “sandwich” laminate consisting of two face sheets bonded to a honey-
comb core (Figure 2-1). In either case, the plate must be symmetrically laminated
with respect to its midplane. Each layer, or ply, in the plate may be made from
a different material. Each material may be isotropic or orthotropic, the latter in-
cluding continuous fiber reinforced composites. Each material must behave in a
linearly elastic manner. A delamination exists between two adjacent plies in the
plate (or face sheet) interior. The delamination may occur between any two plies,
dividing the plate locally into two parts. The delamination may also be at the face
sheet-honeycomb interface. Note that while the plate is symmetric, the two parts on
either side of the delamination will, in general, be unsymmetric. The delamination
is small with respect to the plate planar dimensions but large with respect to the
thickness of the plate. The delamination is either circular or elliptical. The ellipse

may have an arbitrary orientation with respect to the plate (Figure 2-2).

In-plane tensile, compressive, and shear loads may act on the plate. The re-
sponse of the plate to the applied loads is assumed to be initially unaffected by
the behavior of the sublaminate formed by the delamination. The plate response

to the applied loads determines the displacement boundary conditions for the sub-

3



Chapter 2: Problem Statement 4

laminate. Under the action of the applied loads, the delaminated sublaminate may
buckle and subsequently grow in area. Given the plate material properties and the
delamination geometry, the problem is to find: (a) the load-strain behavior of the
sublaminate, (b) the load applied to the plate at which the sublaminate buckles,

and (c) the load applied to the plate which causes an onset of delamination growth.

Honeycomb
Sublaminate =1 Coe
/ /

e~
Bt <}— Laminate il ™ Facesheets

4

Delamination
| | g -
Composite Plate Honeycomb Sandwich Plate

Figure 2-1 Plate geometries investicfated and the division of the plate into two
parts as a result of the delamination.



Chapter 3

Delamination Analysis

§3.1 Approach

The major concepts of the analysis of a delaminated composite plate are pre-
sented in this chapter. The analysis proceeds in four major steps. First, the displace-
ments, strains, and stresses in the plate are calculated as though the delamination
were not present. Second, the load at which the delaminated sublaminate buckles is
determined. Third, the displacements, strains, and stresses in the sublaminate are
determined using the condition that the displacements at the delamination bound-
ary match those of the plate determined in step one. Fourth, the load at which the
sublaminate grows in size is established. In the first step, the behavior of the plate
is calculated directly from laminated plate theory {23]. In the remaining steps, the
approximate behavior of the sublaminate is determined using energy methods.

The following fundamental assumptions of plate theory are employed in the
analysis:

1. The thicknesses of both the plate and the sublaminate are small compared to
all other dimensions.
2. The thicknesses of both the plate and sublaminate are constant.

3. The material behaves in a linearly elastic manner.

6
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Chapter 3: Delamination Analysis 7

4. Each layer is either isotropic or orthotropic.

5. The plate and the sublaminate undergo small strains, and the sublaminate

experiences moderate rotations.
6. The transverse normal stresses are zero in both the plate and the sublaminate.

7. Perfect bonding exists between adjacent layers of the composite (except, of

course, at the location of the delamination).

8. The transverse displacements and rotations in the plate are zero.

§3.2 Coordinate Systems

Three cartesian coordinate systems are employed in the analysis (Figure 3-
1). The coordinate system coincident with the principal material axes of each
orthotropic ply is the z, y, z system. The coordinate system coincident with the
semi-axes of the delamination ellipse is the z;, z;, 3 system. The coordinate
system of the plate is the zy/, z/, 23/ system. The z, y, z system is the on-axis
system, while the other two systems are off-axis systems. The two off-axis systems
are related to the on-axis system by rotations about the transverse axes, where

these axes are all equivalent (2 = z3 = z3).

§3.3 Constitutive Relations

The constitutive relations for a linearly elastic material are
0ij = Cijri€ki 1,7 =12,3 (3.1)

where the C; i are elastic constants relating the stresses o;; to the strains €;;. For an

orthotropic or isotropic material in the on-axis coordinate system, the constitutive
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relations are

Ozz Crzzz szyy Crrz: 0 0 0 €z — az AT
Tyy Cizyy Cyyyy Cyyis 0 0 0 €yy — 0y AT
azz = szzz yyzz szzl 0 0 0 ezz - azAT
Oyz Q 0 0 C,,vg 0 0 26,,,
Ozz 0 0 0 0 ngzz 0 26:;
Ozy 0 0 0 0 0 C,y,y 26”
(3.2)

where the a; are the on-axis linear coefficients of thermal expansion. The temper-

ature difference AT is defined as

AT =T-T, (3.3)

where T is the uniform temperature of the composite and T, is a reference temper-
ature at which the thermal strain is defined to be zero. A convenient value for T

is the temperature at which the material “solidifies” during curing,.

The effects of moisture absorption by the composite material can be treated
in an analogous manner. The strain due to moisture uptake is 3;Ac, where the 3;
are the on-axis linear coefficients of moisture-induced expansion and Ac is the rel-
ative change in moisture concentration. For simplicity, the analytical development
presented here is in terms of thermal strains. However, an equivalent analysis of

moisture effects can be made by substituting 5;Ac for a;AT.

Contracted notation will be used in the rest of the analysis except where noted.
For example, in an off-axis r,, =2, and r; coordinate system the stresses, strains,

and elastic constants are represented by [24]
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o1 — o0y €11 — € Ciin — Cn C2323 — Cyy
O22 — 02 €22 — €2 Ca222 — Ci Ciz13 — Ciss
033 — 03 €33 — €3 Csszz — Ci3 Ci212 — Cégs
(3.4)
O23 — 04 2e23 — €4 C2233 — Ca3 Ca313 — Cys
013 — O3 2613 — €5 Cinsz — Cis C2312 — Cue
O12 — O 2¢12+¢¢  Crnz2— Ch2 Cia12 — Cse

Note that €4, €5, and €g are engineering strains.
For a material in plane stress, the constitutive relations (Eq. 3.2) may be

conveniently written in an off-axis coordinate system as

g1 Qu Q12 Qe O 0 & — AT

o2 Qiz Q22 Q26 0 0 €2 — ap AT

g6 | =| Qe Q6 Qes O 0 €g — agAT (3.5)
04 0 0 0 Qu Qs €4

os 0 0 0 Q4 @Qss €s

where the Q;; are the plane stress reduced stiffnesses defined as

Ql']' = C'] - C—:; LW = 172’6 (3 6)
6,7 =4,5

Qi; = Cij
The stresses and strains have been arranged so as to group the in-plane and out-
of-plane components separately. The apparent thermal shear term (ag AT') appears
since the constitutive relations are expressed in an off-axis coordinate system. Ex-

pressions for Q;; in terms of engineering constants for isotropic and orthotropic

materials are given in Appendix A.

§3.4 Displacements, Strains, and Stresses in the Plate

In the plate coordinate system (z;/,z5r,Z3 ), the in-plane total strains in the

symmetrically laminated plate (containing no delamination) resulting from uni-
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formly applied in-plane load resultants Ny/, Ny, and Ng: (Figure 3-2), and a tem-
perature difference AT are [23]

l T
oefl allll 01:21 allsl le + Nf,

)
°5‘2’, = Ay Qg Qorgl N2: + Ng,‘T (37)
oels’ll ayre’ agg’ agrg’ Ng' +N6P'IT

The matrix elements a;;, which are the inverses of the plate stiffness matrix elements

A.'j [23], are

ay -1
(aij) = (Awj)™' = ( /_ L;i Qirj dzy) i,5'=1,2,6 (3.8)

where h?' is the thickness of the plate. The thermal load resultants N?'T, N2'T

1 oo Vs
and Ng,‘Ta.re

T
Nf'lT e (Quy GQur Que ay
N;, = o Qllzl lezu lesl Qo ATdZ':;' (39)
NE'T - Que Qe Qee ag

In the sublaminate coordinate system (z1, z2, z3), the total strain components

are determined by a tensor rotation about the transverse axis z3

1
°eb! m? n? nm %!,
oe;l = n? m2 nm °e‘2’,‘ (310)
°e§‘ —2nm 2nm m? —n? °€:,'

where m and n are cos 6 and sin 8, respectively, and 8 is the angle between the plate
and sublaminate coordinate systems (Figure 3-1).

To simplify the buckling and postbuckling analyses, proportional mechanical
loading is assumed. Each of the in-plane load resultants may have a unique value,
but the relationship of one to another is fixed. In this way, a single load parameter

N suffices to characterize the total load on the plate
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Sublaminate

N2y

Figure 3-2 In-plane load resultants N,,, Ny, and Ng in the plate coordinate
system.
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Ny T
Nzl = Y2 N (311)
Ng Ye

with the relative magnitude of each load described by the fractions v1, v2, and 6
(71 +72 +76 = 1). The resulting total strains in the sublaminate coordinate system

(z1, z2, 3) may now be expressed as

epl ¢ epIT
°eP‘ =|c P‘T (3.12)
>4 »t Ce °e"T
where ¢;, ¢;, and c3 are defined by
c1 m?2 n? nm ayy Gy Gye o7
e | = n?  m? nm ayp Gy  Gye 2 (3.13)
Cg —2nm 2nm 1""12 - n’ Qyr¢r Q21g' QGgre’ “Ye
and the thermal strains in the plate by
°eb!T m? n? nm ayy Gy Gy N2
°eh pIT = n2 m? nm ayyr G Gge N’ IT (3.14)
°€plT -2nm 2nm m2 - n2 ajrgr Gargr QGgrg’ N

Integration of Equation 3.12 (Appendix B) gives the in-plane displacements of the

plate

1
°u" =(aN+ °e"'T)3:1 + —(ceN + &'z,
(3.15)
ull = —(csN +°' )2y + (2N + °€ T ey
Equation 3.15 together with Assumption 8 (°u§' = 0) completely describe the dis-
placements in the plate. The displacements at the sublaminate boundary must
match these displacements. Note again that the displacements and strains are

taken to be zero when the temperature is T, and no mechanical loads act on the

plate.
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§3.5 Strain-Displacement Relations for the Sublaminate

The nonlinear strain-displacement relations used for the sublaminate are those
proposed by von Karman [25] for the large displacement analysis of plates. Although
von Karman discussed the use of these strain-displacement relations only in the
context of classical plate theory, it has been shown (Appendix C) that they are
appropriate for the moderate rotation, shear deformation theory used here. The
strains ¢;; (reverting to conventional notation for the moment) are related to the

displacements by

) (3.16)

Using a higher order shear deformation theory [26-29], the sublaminate dis-

placements are taken to be cubic functions of the transverse coordinate 3
ui'(z1,%2,23) = uf!(21,22) + 239} (21, 22) + 23€{ (21, 22) + 23nf (21, 22)
u5' (21,22, 23) = “ug (21, 22) + 2a¥5 (21, 22) + 2345 (21, 22) + 23ns (21, 22)

u;l(zl, I2, .’L‘3) = ou;I(zl, 32)
(3.17)

where °uj!, °u3!, and °u}' are the displacements of the sublaminate midplane, and
3, 98l €3, €80, i, n§! describe rotations of line segments originally perpendicular

to the sublaminate midplane.
No shear forces act on any of the lateral surfaces of the sublaminate. Hence,

the shear stress components (returning to contracted notation) on these surfaces

are

hal

04 =05 = 0 at T3 = :f:—z- (318)

where h* is the thickness of the sublaminate. For a sublaminate constructed of iso-

tropic or orthotropic materials, the above condition requires that the corresponding
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shear strains on the lateral surfaces also be zero (Eq. 3.2).

hal

eg=€e=0 at z3= :i:—2— (3.19)

Substituting the displacements (Eq. 3.17) into the strain-displacement relations
(Eq. 3.16), differentiating, and applying the four boundary conditions (Eq. 3.19),

the relationships between the rotation functions are [30]

f=g=0
4 aual
sl _ __ 3 sl
= 3(hal)2( Oz, +¥1) (3.20)
4 aual
sl _ -3 sl
My = 3(h‘l)2( 6232 +¢2 )
Using Eq. 3.20, the displacements (Eq. 3.17) may be rewritten as
ual — oual +z {'/’d _ 41’% (augl + al)}
1= " 3 1 3(hal)2 3121 1
4z  Ouf (3.21)
sl __ o sl sl _ 3 3 sl
uy = ‘uy + z3{y3 _3(h‘l) (—""a:":2 + 43}
u;l = ou;l

The displacements are now specified in terms of only five functions: three midplane
displacements °uf’, °uj’, u$’, and two rotation functions ' and ¥3!. Using the

displacements in Eq. 3.21, the nonlinear strains (Eq. 3.16) may be expressed as

e;l = °€;I + 2’30,“;( + zg 2K;'
e;l = OG;I + 173°I€;’ + 332 2&;’
et =0
(3.22)
{ {
e =€}’ + 23 %}

e;' = °e§' + :c§ 2n§'
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In these expressions, %}’ are the midplane strains, and °#' and %?! are the midplane

curvatures of the sublaminate defined by

4 o cl awcl
o_s ao sl 6° sl o_sl _ 61/).‘ 2"’1 = :
€= o+ 5 ) T e ‘ 3(h")2( " os,)
o al
5°us! 1 8%2 o ol 3‘:/)5' 2. sl _ 4 *°u a¢'
o sl _ OUu3 312 o8l _ k3 =
4 = e T3 2o " = e, : 3(h“)2( * B2,
a aoual
o sl _ :l 2, 80 _ 3
€ = 2 "4 (hcl)2 o (V3 6:1: )
o_sl — 2 sl 3qu"
€s 1 931 ks = (h")2 (¢ 9z, )
sl o,, sl F1 {
°€;l =aaoul + aau2 on;I = al;bl + a¢_5 2,8 ( 2
T3 T 0z, oz, ¢ 3( hal)2 6::2 6:1:1
8° ;I O%?! 20, ol
0%°u}
311 a:tz + 20&:1622 )
(3.23)

§3.6 Displacements, Strains, and Stresses in the Sublaminate

The displacements in the sublaminate are assumed to be a linear combination
of two parts: .(a.) the displacements that would exist in the sublaminate in the
absence of the delamination, plus (b) the displacements introduced by transverse
deformation of the sublaminate. The five functions describing the sublaminate
displacements are

ou:l o ougltl + oa;I

{ -~
o;lgop +o sl

ou;I o ougl + oﬁ;I = Q&;l (324)
¢01~¢,Pl+d)l — ;

vi' 2 gf + 4 = 4
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The in-plane displacements in the plate (°uf ! °u§') are given in Eq. 3.15. The second
equalities in the last three expressions can be written because the transverse dis-
placements and rotations in the plate are assumed to be zero (Assumption 8). The
displacements in the sublaminate due to out-of-plane deformation (the quantities

with the hat) are represented by

np
o~sl __ X
4y = ZP:'P¢J

=1

Ry
orsl __ . .
Uy = z :qzq¢1
i=1
ny

= r;"4; (3.25)
Jj=1
n,

78l
M= s

j=1

ne
3= '

i=1

where n, through n, are the number of terms in each series. The parameters p;, g¢;,
r;, 8;, and t; are coefficients, while P¢;, 94;, "d;, *$;, and *¢; are functions of the
coordinates z; and z;. Expressions for these coordinate functions must be chosen
such that they: (a) satisfy the boundary conditions on the sublaminate (discussed

below) and (b) are linearly independent, continuous, and complete [30].

One of the fundamental assumptions of this analysis is that the displacements of
the sublaminate and plate match along the boundary of the sublaminate. Along this
boundary, the displacements are completely specified, while the force and moment
resultants are unspecified. Thus, by definition, the sublaminate boundary is a
clamped boundary (Figure 3-3). The appropriate clamped boundary conditions are
(26, 27)
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Clamped Boundary

Sublaminate

Figure 3-3 Illustration of the clamped boundary at the sublaminate edge.

ou;l =° u;l)l
ou;l =9° ugl
ou;l =° ugl

d=ypl=0

d=yl'=0 (3.26)
3°u;’ _ 3°u§' _

=0 0z, Oz, =0

The subscripts n and ¢ refer to the normal and tangential directions, respectively, to

the sublaminate boundary (Figure 3-4). Clearly, the first five boundary conditions

require that the functions ?¢;, ¢;, "d;, *¢;, and *@; vanish at every point on the

boundary (Eqs. 3.24 and 3.25). The final boundary condition of Eq. 3.26 requires

that the derivative of "¢; also vanish on the boundary. Accordingly, the following

polynomial coordinate functions were chosen
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Sublaminate

Figure 3-4 Definition of the tangent ¢t and normal n coordinates along the sub-
laminate boundary.
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pi?d; = (1 — 22 — 22)(p1Z1 + PaZa + paZs + psiZy + psZ1Z3 + PeZs
+ prZ} + psZiZ2 + poZiia + proZiZs + p11Z155 + P127s
+P13%] + P14ZiT2 + p1sTiZ3 + P16} Ty

+ P17T3Z4 + P18ZZS + P19Z1ZS + P2oZy)
gj9; = (1 — 23 — 22)(q1%1 + q2%2 + @373 + uF2%y + g5, Z2 + g6 73

+ q7fi’ + qsf:fz + Qinfg + qugfg + QIIEIE; + qlzfg (3.27)

7 =6 = -5-2 —4-3
+ 13T + q14Z1%2 + Q157173 + Q167175

=3 =4 =2 =5 = =6 =7
+ 17173 + 18173 + 197173 + G2072)
e =2 =2\2 =2 _2 _
ri'; = (1 — 2§ = 23)%(ry +r2%7] + raZ3 + r47173)
o, _ =2 =2 = - =3 ~2- R =3
3;°¢; = (1 — z1 — 73)(81%1 + s2T2 + 83T + 847172 + 357173 + 3673)

t;'0; = (1 — 22 — 22) (1121 + t2Z7 + taZs + 14322y + ts 3132 + te13)

where
T = (fal)
22 = (F)

These expressions satisfy the boundary conditions for an elliptically-shaped sublam-
inate (semi-axes a and b), and satisfy the condition that the functions be linearly
independent, continuous, and complete.

The functions in Eq. 3.27 are similar to those used by previous investigators
[16,18,19]. However, previous investigators have omitted various terms from the
series. Either the omission of terms from a series or the premature truncation of a

series can affect the accuracy of the results. In particular, it is important to retain
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1. Crossproduct terms (e.g. r4Z;%,) for arbitrary delamination orientations;

2. P¢; and 9¢; to at least one order higher than "¢; for accurate postbuckling
calculation of in-plane strains; and

3. *¢; and *¢; to the same order as %%? for accurate representation of transverse
shear rotations.

The displacements in the sublaminate (Eq. 3.21) are now specified in terms
of the unknown coefficients p;, ¢;, rj, sj, and t; and their associated coordinate
functions (Eq. 3.27). The off-axis strains at any point in the sublaminate may
be calculated from the midplane strain and curvature definitions (Eq. 3.23) and
the strain-displacement relations (Eq. 3.22). Using the strains, the associated
off-axis stresses in each ply of the sublaminate may be calculated from the off-axis
constitutive relations (Eq. 3.5). On-axis strains and stresses in each ply are obtained
by rotating the respective off-axis strains and stresses into the on-axis coordinate
system [23].

The displacements, strains, and stresses in the sublaminate are thus specified
in terms of the coefficients p;, ¢;, rj, 3;, and t;. These coefficients are determined

by the Ritz energy method.

§3.7 Total Potential Energy

The total potential energy of the sublaminate II*' in the absence of body forces
is [31]

H"=‘/(o/a,~de,-)dV—h/<0/fdu3) dA i=1,2,456  (3.28)

where V is the volume of the sublaminate, A is the lateral surface area of the
sublaminate, and f is the force per unit area acting on the surface. The subscript

3 is not included since the transverse normal stress o3 is assumed to be zero. Note
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that repeated subscripts imply summation. Substituting the constitutive relations

(Eq. 3.5) for o; yields

=‘/(ZQ,-j(ej—ajAT)de.-> dv - A/(/fdus) i,j=1,2,4,5,6 (3.20)

0

Integration of Eq. 3.29 with respect to ¢; produces

u-l

3
= %/e,-Q,-,-e,- dv —/fiQijajATdV - /(/fdus) dA 1,5 =1,2,4,5,6
v v 4 0
(3.30)

Two kinds of surface traction are considered to act on the lateral surfaces of
the sublaminate. First, a uniform transverse pressure may exist due to a pressure
difference AP between the outside and inside surfaces of the sublaminate (Figure 3-
5). The pressure on the outside surface is generally atmospheric. On the inside
surface the pressure may be subatmospheric due to a partial vacuum that may
form as the sublaminate buckles. Second, a force may result from contact between
the buckled sublaminate and the plate over portions of the delaminated surface
(Figure 3-6) [32]. Where the sublaminate tends to deform toward the plate, contact
between the two will occur and a force resisting the sublaminate deformation will
arise. This contact is modeled by considering the sublaminate to be resting on a
detached elastic foundation (Figure 3-7). The restoring force is taken to vary linearly
with the sublaminate transverse displacement u$' for positive displacements, and to
vanish for negative displacements. Therefore, the force per unit area acting on the

sublaminate at a given point is

_fAaP-Ku$ u§>0
f= {AP uf! <0 (3:31)
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The foundation modulus K (33, 34] is estimated from (Appendix D)
~ %’f (3.32)
where Ejy is the elastic modulus of the foundation and [f is a characteristic length
(for example, the sublaminate diameter).
Note that the transverse pressure model only makes sense in conjunction with
the contact model. Without the contact model, the transverse pressure would

simply produce sublaminate bending toward the plate.

Atmospheric Pressure

—

Subatmospheric Pressure

Figure 3-5 Possible pressure difference acting across the sublaminate thickness.
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Figure 3-8 Contact between the sublaminate and plate.
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Sublaminate

Plate

Contact Force, f

Figure 3-7 Detached elastic foundation model of contact force.
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Integration of Eq. 3.30 with respect to the thickness h*!, together with the
strain definitions (Egs. 3.22 and 3.23), results in the following expression for the

total potential energy [30]

sl

l.tr
K Ay Ays Dy Dys ‘€4

€
1 oeal A D D oeal
sl _ L 5 55 45 Dss 5
= 2// %! sym Fu Fps || % | 4%
A 2";! F55 2’:;(

/°€f' "(Au Aia A Bu By Bie En Ey; Ese \ (°€f'\
%3’ A2 Az Bz By; By Ei; E;; Eg %!
%3! Ae¢ Bis Bis Bge E¢ Eig Ege %2!
1 °x{! Dy Dy Dy Fiyz F; Fy °x{!
'2/ / k3! Dy; D¢ Fia Fypy Fy x5! |dA
Y4 g Des Fig Fis Fue k3!
2! sym H,, H,, Hi L
28! Hy, Hye 23!
2&;’ K Hge / \2Ic"
NalT
( N;alT\
NalT
M}IT uy!
- //(°€f', oe;l, °€;l, °l$f', on;l’ °Ic;l,2rc;l,2lc§',2lig‘) MzalT dA — K/ f du3> dA
a M'T 40
PlalT
PalT
Ny
(3.33)

where ¢r represents the matrix transpose, and Aij, Bij, Dij, Eij, F;, H;; are

sublaminate stiffnesses (Appendix E) defined by
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ol

Ay
(A.'j,B,'j,D,‘j,E.’j,Ej,ng) = / Q;,-(l,zs,zg,xg,z‘;,zg)dxa t,7 =1,2,6
i
A;_'.
(A,'J',D.'j,F.'j) = / Q;,-(l,zg,zg)dma ,7] =4,5

i

(3.34)

The thermal force and moment resultants are
A,‘:i
(Ni"T7Mi"T7Pi"T) = / QijajAT(lazihzg)dx:’ 4,3 =126 (3.35)

The specific limits of integration over the area A of the elliptical sublaminate

[...]dzodz, (3.36)

a pby/1-(21)?
/_a -by/1-(3)?
where the ellipse is bounded by 1 — (%‘-)2 - (1’51)2 = 0, and a and b are the semi-axes

in the z, and z, directions, respectively.

§3.8 Applied Load versus Deformation of the Sublaminate

To establish the relationship between the applied mechanical and thermal loads
(N and AT) and the sublaminate deformation (u{', u3!, and u}'), the total potential
energy of the sublaminate (IT*') is first assembled by substituting the displacement
approximations (Eqs. 3.24, 3.25, and 3.27) into the midplane strain and curvature
definitions (Eq. 3.23), and then substituting these results into the expressions for the
total potential energy (Eq. 3.28). The resulting expression is extremely lengthy and
will not be given here. Essentially, the total potential energy of the sublaminate

is now expressed as a function of the known geometry (a,b), material properties
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(Aij, ..., ), and applied loads (N, AT), and a set of as yet unknown coefficients

(pjs qdj, Tj, 35, tJ)

0* = 0°!(a,b; Aij,...,ai; N,AT;pj, ¢j, 75, 85, t5) (3.37)

The unknown coefficients are determined by minimizing the total potential energy

with respect to the coefficients [30]

anal .
o = 0 = 1t0 56 (3.38)

where m; is used as a generic unknown coefficient representing p;, g¢;, r;, s;, or t;.
The differentiations indicated in Eq. 3.38 result in a system of 56 nonlinear alge-
braic equations in the unknown coeficients. These are the equilibrium equations. A
solution to these equations yields a set of coefficients (3;, §;, f;, §;,%;) corresponding
to specified values of the applied loads (JV , Af’), where the hat indicates a partic-
ular set of loads. Knowing the coefficients, the displacements, strains and stresses

throughout the sublaminate can be determined.

A load-deformation history for the sublaminate is mapped out by solving the
equilibrium equations over a range of applied loads. However, care must be exercised
due to the nonlinearity of the equations. In general, more than one solution exists for
a given load. The solution must correspond to a local minimum of the total potential
energy, implying that the solution must be physically stable. Furthermore, multiple
stable solutions are possible. Therefore, each possible solution (35, §;, 75, §;,%;) must
be tested to determine whether it corresponds to a local minimum of the the total
potential energy (stable solution) or a local maximum (unstable solution). The

stability test [35] requires that the determinant of the matrix of second partial
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derivatives of the the total potential energy be positive definite

62Hal(ﬁi’ ‘iJ" fj?gijj) >

g oy 0 ik=1to56 (3.39)

where m; is again a generic coefficient. If multiple stable solutions are shown to
exist, each with an associated total potential energy, then the solution with the
minimum total potential energy of the sublaminate is assumed to be the most likely

solution.

§3.9 Buckling Condition

The buckling load is one at which the system changes from one configuration
to another, energetically more favorable, configuration. This change occurs at a
load for which the determinant of the matrix of second partial derivatives of the
potential energy ceases to be positive definite [31, 36]

P! (rh;)

B9y =0 t,k = 1to56 (3.40)

In the equilibrium problem described above, the unknown coefficients are deter-
mined for a known load. In the buckling problem, both the load and the coefficients
for which Eq. 3.40 applies are desired. Two different approaches have been used
to solve the buckling problem. In the linear method, the values of the unknown
coefficients are assumed to be zero (p; = ¢ =r; = 8; =t; = 0) and the buckling
load N} satisfying Eq. 3.40 is found. In the equilibrium method, the load N is
gradually incremented over a range of values, each time solving the nonlinear equi-
librium equations for the unknown coefficents as above. The point at which the
displacements change dramatically with increasing load (Figure 3-8) is the buckling
load N;. Since unsymmetric laminates may deform out-of-plane at loads léss than

the linear buckling load, the equilibrium method is recommended.
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Z

g | Linear Buckling Load, Ny,
S /

2

2 | &

& N

§ \\ Actual Buckling Load, N,
T

a

a

<

Sublaminate Strain, e

Figure 3-8 Illustration of the actual load-strain behavior and the calculated linear
buckling load.

§3.10 Growth Criterion

The strain energy released per unit area by the plate-sublaminate system for
an increment of sublaminate growth is the strain energy release rate G. The delam-
inated sublaminate is assumed to grow for a given load when G exceeds a critical

strain energy release rate G. of the material [37]

t _ 118l
! —mh o

G dA

(3.41)

where I1*! and II?! refer to the strain energies of the sublaminate and plate, respec-
tively, and A is the surface area of the sublaminate. The strain energy released by

the plate is the strain energy of that portion of the plate which becomes part of the
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new sublaminate after growth (Figure 3-9). Thus, the strain energy of the plate is

K p’ A Az Ase K ’1"
// ép: A12 A22 Azs e”‘ dA
%k Ag Az Ass "'
T ‘e (3.42)
//( epl oegl’oepél (NplT> dA

NPT
The stiffnesses A;; and thermal resultants NP7 are evaluated over the thickness
of the sublaminate because the strain energy of the balance of the plate does not
change during growth of the sublaminate. Only the sublaminate portion of the
plate contributes.

Following Chai and Babcock [18], the total strain energy release is considered
during growth of the sublaminate. That is, although the strain energy released
during growth of the sublaminate varies along the sublaminate boundary, local
variations in the strain energy release are not included here. For an elliptically-
shaped sublaminate, Eq. 3.41 may be written (Appendix F)

! i el ol
o CES+B) — CE g +

> G, 3.43
m(b + a) 26 (3.43)

where A = mwab is the area of the elliptical delamination. The parameter %% describes
the direction in which the sublaminate grows (Figure 3-9). For example, -‘:;‘i- =0
implies growth in the b direction only, %‘i— = oo implies growth in the a direction only,
and 4§ = § implies self-similar growth. The strain energy release rate is evaluated
over a range of values of the parameter %% so that the lowest G can be found. In
practice, sublaminate growth is often observed in a direction perpendicular to the

applied load. Thus, a suitable choice would be %ﬁ- = 0 (growth in the b, or z,,

direction) for a load applied in the r; direction.
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Figure 3-9 Definition of the growth parameter %‘i—.
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Chapter 4

Implementation

§4.1 Introduction

The FORTRAN computer code DELAM was developed from the analysis of
sublaminate buckling and postbuckling behavior (Chapter 3). The program reads
input data describing the delamination and the plate in which it is contained, in-
cluding: (a) the plate material properties, geometry, and layup; (b) the location,
dimensions and orientation of the delamination; and (c) the applied loads. A list of
the required input data is given in Table 4-1.

From the input data, derived properties are calculated for subsequent use in
the delamination analysis: (a) the on-axis stiffnesses of each ply (Appendix A);
(b) the ply on-axis plane stress reduced stiffnesses (Eq. 3.6); (c) the ply off-axis
reduced stiffnesses which appear in Eq. 3.5 in both the plate and the sublaminate
coordinate systems; (d) the laminate stiffnesses for the plate (Eq. 3.8) and the sub-
laminate (Eq. 3.34) from the off-axis reduced stiffnesses; () the thermal resultants
for the plate (Eq. 3.9) and sublaminate (Eq. 3.35) from the off-axis reduced stiff-
nesses, the thermal coefficients of expansion (as rotated into the off-axis system
[24]), and the specified temperature difference; (f) the constants describing the me-
chanical response of the plate (Eq. 3.13); and (g) the thermal strains (Eq. 3.14).
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Table 4-1 Input Parameters Required for the DELAM Computer Code

Plate and sublaminate geometry and layup
Number of plies in the plate, k,
Number of plies in the sublaminate, kg4
Semi-axes of the ellipse, a,b
Angle of the sublaminate axes with respect to the plate, 8
Thickness of each ply, ¢;
Orientation of each ply, ¢
Material properties for each ply
Longitudinal Young’s modulus, E,
Transverse Young’s modulus, E,
Longitudinal to transverse Poisson’s ratio, v,
In-plane shear modulus, G,
Out-of-plane shear moduli, G;:,G,.
Thermal (or hygro) coefficients of expansion, a;,ay (8:,8y)
Growth and contact parameters
Critical strain energy release per unit area, G
Relative growth direction parameter, %ﬁ-
Contact law foundation modulus, K
Load description
Normal load in the 1 direction, v,
Normal load in the 2 direction, v,
Shear load in the 1-2 plane, g
Change from reference temperature (or from dry) state, AT (or Ac)

Transverse pressure load, AP
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§4.2 Total Potential Energy

The total potential energy of the sublaminate is calculated from Eq. 3.33, using
the laminate stiffnesses and thermal resultants which have already been determined.
The substitutions and integration were performed by the symbolic mathematics
program MACSYMA [38], with the exception of the contact model, which was in-
tegrated numerically [39]. An expression for the total potential energy was thus
established as a function of the known geometry, material properties, applied loads,
and a set of unknown coefficients to be determined. The first and second mixed
partial derivatives of the total potential energy with respect to the unknown coeffi-
cients were determined using MACSYMA. In addition, the partial derivatives of the
total potential energy with respect to the major and minor axes of the sublaminate
ellipse were evaluated using MACSYMA. The expressions for these derivatives were
then inserted into the computer code DELAM for use in the load-strain behavior,

buckling, and growth calculations.

§4.3 Nonlinear Load-Strain Behavior

The stresses and strains in the sublaminate are determined by obtaining solu-
tions to the equilibrium equations (Eq. 3.38) for specified values of the load N. The
equilibrium equations are a set of 56 simultaneous algebraic equations nonlinear
in the coefficients m;. These equations are solved for the unknown coefficents m;
by the Newton-Raphson method [39]. Once a solution for a given N is found, the
stability of the solution is checked by calculating the determinant of the matrix of
second partial derivatives of the total potential strain energy using the values of the
coefficients obtained in the solution (Eq. 3.39). A positive determinant indicates

that the solution is stable.

The displacements at any point in the sublaminate are calculated by substi-
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tuting into Eq. 3.24 the solution coefficients and associated coordinate functions
(Eqgs. 3.25 and 3.27) together with the boundary conditions (Eq. 3.15). The mid-
plane strains and curvatures are then determined from Eq. 3.23. The strains at any
point in the sublaminate are calculated from Eq. 3.22. Finally, the stresses associ-
ated with these strains are determined from the constitutive relationship (Eq. 3.5).

The load versus strain behavior is determined by repeating the above procedure for

different values of the applied load V.

§4.4 Buckling Load

The linear buckling load N} is the load at which the determinant of the matrix
of second partial derivatives of the total potential energy equals zero (Eq. 3.40).
Using the given geometry and material properties, the elements of the matrix are
numerically evaluated for an initial estimate of the buckling load, assuming that the
unknown coefficients are equal to zero. The determinant of the matrix is found by
decomposing the matrix into lower and upper triangular matrices. The product of
the diagonal elements of the upper triangular matrix (LU decomposition [39)) is the
value of the determinant. This constitutes a single evaluation of the determinant as
a function of N. In general, the determinant is a nonlinear function of the load N,
and explicit derivatives of the function with respect to N do not exist. The load at
which the determinant is zero is found using the secant method [39].

Alternatively, the buckling load N, is graphically determined by examining the
complete load-strain behavior of the sublaminate. The load at which the sublam-
inate behavior begins to markedly deviate from a linear response is defined to be

the buckling load.
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§4.5 Growth Load

The growth load of the sublaminate is the load at which the strain energy
release rate of the plate-sublaminate system exceeds the critical strain energy release
rate of the material (Eq. 3.41). A value is assumed for the growth load N,, and the
associated nonlinear equilibrium displacements are determined in the same manner
as in Section 4.3 above. For the displacements thus obtained, the derivatives of the
total potential energy with respect to the geometry are evaluated and the strain
energy release rate G of the system is calculated (Eq. 3.43). This G is a nonlinear
function of N. The value of N at which G equals G, is found using the secant
method [39].

84.6 Code

The computer program DELAM was specifically written to be used for design
calculations as well as for research. It has a user friendly interface, and is computa-
tionally efficient and fast. For example, the computation of the nonlinear load-strain
behavior of a sublaminate over sixteen values of the applied load requires 7 minutes

of CPU time on a Sun 3/160 workstation. The input parameters required by the
code are given in Table 4-1. The outputs provided by the code are listed in Table 4-

2 and illustrated in detail in Chapter 8. Sample input and output of the code are
included in Appendix G.
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Table 4-2 DELAM Output

Linear buckling load, N}

Actual buckling load, N}

Growth load, N,

Stress-strain behavior in the sublaminate, af}(m, Y), e;?J'-(:c, Y)

Stress-strain behavior in the plate, af} (z,v), ef}(z, y)




Chapter 5

Analytical Verification

§5.1 Introduction

Verification of the delamination behavior model consists of three tasks: (a) com-
parison to known benchmark analytical solutions, (b) comparison to other approxi-
mate solutions, and (c) comparison to experimental data. The first two verification
tasks are presented here; the experimental procedure and results are presented in
Chapters 6 and 7, respectively.

The benchmark problems consider the behavior of circular and elliptical plates
without delaminations under various loadings. The computer program DELAM
must be able to predict the behavior of simple plates under edge compression and
uniform pressure loads. For certain geometries and material properties, closed form
analytical solutions exist. These have been chosen as the benchmark problems.

Approximate solutions to the behavior of plates containing elliptical delami-
nations have been proposed by several investigators [16,18,19,20,21,22]. In general,
these solutions pertain to problems more limited than the analysis presented here.
Nevertheless, some of the approximate solutions may be compared to the present

method for a select set of problems.
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§5.2 Buckling of Circular and Elliptical Plates Without Delaminations

Consider the buckling of an isotropic, circular plate subjected to uniform edge

compression. The buckling coefficients k, defined as

k= Np— 5.1
2 (5.1
were calculated by DELAM for both clamped and simply supported aluminum
plates, where N, is the critical buckling load and a is the plate radius. The plate
bending stiffness D is

Eh?

D= ma=

(5.2)

where E is Young’s modulus, A is the plate thickness, and v is Poisson’s ratio. The
classical buckling coefficients for clamped and simply supported plates are given by
Timoshenko and Gere [33] as 14.68 and 4.20, respectively. The coefficients are inde-
pendent of the plate radius-to-thickness (aspect) ratio ¢ since the solution is based
on classical plate theory. The DELAM and classical buckling coefficients are plot-
ted versus the plate thickness ratio in Figure 5-1. The primary difference between
classical plate theory and the present method is the inclusion of transverse shear
deformation in DELAM. At large thickness ratios, the predictions are identical; at
thickness ratios of less than 20, the effects of shear deformation become apparent

as the DELAM buckling coefficient drops significantly below the classical value.

Consider next the buckling of an isotropic elliptical plate under uniform edge
compression. The buckling coefficients k for clamped and simply supported plates
were calculated by DELAM for an aluminum plate over a range of ellipticities (§)
from one to five. The present results are compared with an approximate solution

developed by Voinovsky-Krieger [40] in Figure 5-2. As Voinovsky-Krieger did not
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Figure 5-1 Buckling coeficients of clamped and simply supported circular alu-
minum plates subjected to uniform edge compression (a = 1.0 in.).

———————————————————1 T
14 - <
NQ L
£L 12 e -
5. s o o o °
S 10f -
é . Clamped v
g 8 Present 7/1, X -
% |+ © Voinovsky-Krieger a
.g 6 i k 7
2 L
-]
4 \.“N Simply Supported .
3 [e) [+ (-]
| 3 I N . . 1 " A PN S | " A N A 1 1 -
1 2 3 4 5
Ellipse Major/Minor Axis Ratio, a/b

Figure 5-2 Buckling coefficients of clamped and simply supported elliptical alu-
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include shear deformation effects, a large thickness ratio (4 = 100) was chosen for
the present calculation to minimize the effects of shear deformation. At the lower
ellipticities the results are virtually identical, while at higher ellipticities the present
results are slightly lower. This is to be expected since the present solution uses more
terms in the approximating functions than did Voinovsky-Krieger, thereby reduc-
ing the stiffness of the approximation and lowering the buckling coefficients. The
simple support prediction is included in the figure for completeness since Voinovsky-
Krieger suggested that the buckling coefficients for simply supported plates could
be estimated by dividing the clamped plate values by a factor of 3.5.

§5.3 Large Deflections of Circular Plates Without Delaminations

The linear theory of plate bending is usually limited to transverse deflections
on the order of fractions of the plate thickness. Nonlinear theories which include
moderate rotations (such as the present method) allow transverse deflections up to

about two times the plate thickness.

Consider an isotropic, clamped circular plate without delaminations subjected

to a uniform transverse load. The transverse deflections at the center of the plate

were determined by DELAM as a function of the applied uniform load. In Figure 5-

3, the present solution is compared to a perturbation method solution given by Chia

[41]

4
foa 16 wel, 1 — 730)( 2oy
BR = 30=77) 1+ 55 (14 )(173 = T8v)(3 (5.3)

where ¢, is the transverse uniform pressure and w, the transverse deflection at the
center of a thin plate. The present solution and Chia’s solution agree very well
out to transverse deflections of at least twice the plate thickness. As expected, the

linear solution (which omits the higher order terms in the bracket) agrees with the
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nonlinear solutions to transverse deflections of only about four-tenths of the plate

thickness.

§5.4 Change in Total Potential Energy of a Plate Without Delaminations

Consider an isotropic, clamped circular aluminum plate of radius a subjected
to a transverse load as in the previous section. The change in total potential energy

IT of the plate for an increment of the area (4 = wa?) is

G=_M 1 (5.4)

where self-similar growth has been assumed. The change in total potential energy
was calculated by DELAM as a function of the applied uniform load. For compar-
ison, G was calculated using the perturbation method solution of Chia [41]. The
total potential energy II was calculated using the stresses, strains, and displace-
ments as given by Chia (Appendix H), and differentiated with respect to the area
A to give G. The present solution is compared to that of Chia as a function of the
applied load in Figure 5-4. At lower loads, the solutions agree well. At higher loads,
the perturbation solution for G is somewhat higher than the present solution, due

to the use of more terms for the displacement functions in the present method.
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§5.5 Buckling of Elliptical Sublaminates in Plates Containing

Delaminations

Several investigators have proposed approximate solutions to describe the be-
havior of plates containing elliptical delaminations. To compare the present sublam-
inate behavior model, which is quite general, to results presented in the literature,
it is necessary to make several simplifications:

1. The axes of the ellipse are aligned with the load axes.

2. The sublaminate is a single layer which is either isotropic or orthotropic.

3. The base plate is isotropic, and is much thicker than the sublaminate.
The normalized critical buckling strain is defined as

b2
€n = €cr(l — Vpyvyz)——3 (5.5)

(het?

where ¢, is the far field strain in the plate when the sublaminate buckles, and h is
the sublaminate thickness. The normalized critical buckling strain was calculated
by DELAM as a function of the plate ellipticity (a/b) for three cases: (a) an isotropic
aluminum sublaminate and base plate, (b) a unidirectional sublaminate with the
fibers aligned in the load direction (case A), and (c) a unidirectional sublaminate
with the fibers aligned transversely to the load direction (case B). The base plate
for these cases is a fictitious isotropic material. The material properties of the
sublaminates and base plafe are given in Table 5-1.

The DELAM predictions are compared with those of Chai and Babcock [18]
and Kassapoglou [19] for the isotropic, orthotropic A, and orthotropic B sublami-
nates in Figures 5-5 through 5-7, respectively. For the isotropic and orthotropic A
sublaminates, the present results agree well with those of Chai and Babcock and
Kassapoglou. For the orthotropic B sublaminate, the present results agree with

Chai and Babcock and Kassapoglou at ellipticities greater than three. At lower
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ellipticities, all of the analyses show different results. The orthotropic sublaminate
B is very stiff compared to the base plate in the direction transverse to the applied
load. Thus, under compressive loading the transverse Poisson expansion of the base
plate drives the sublaminate into tension in the fiber direction. Conversely, an ap-
plied tensile load will cause a Poisson contraction of the base plate and compression
in the fiber direction of the sublaminate. Both the present solution and Chai and
Babcock actually predict buckling under an applied tensile load (not shown) for
case B at lower ellipticities. In any event, case B is an extreme situation for which

none of the methods presently agree.

Table 5-1 Material Properties used in the Comparisons

Material Isotropic  Orthotropic Orthotropic Isotropic Base Plate

Property Aluminum Case A Case B for Cases A and B
E; 10.0 1.47 25.9 1.47
E, 10.0 25.9 1.47 1.47
Vzy 0.30 0.28 0.016 0.30
Gy 3.84 1.03 1.03 0.567
Gz 3.84 1.03 0.286 0.567
Gy: 3.84 0.286 1.03 0.567

The elastic moduli are in Msi. Poisson’s ratio is dimensionless.
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§5.6 Summary

The results indicate that the present analysis method can predict the buckling,
postbuckling large deflection, and growth behavior of circular and elliptical plates
and sublaminates subjected to various loads. Final verification of the method for
the general cases of: (a) elliptical delaminations with axes arbitrarily oriented with
respect to the applied in-plane loads, and (b) delaminations located between any
two plies of the composite plate, will be made in Chapter 7 by comparison to

experimental data.
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Figure 3-8 Normalized critical buckling strain. Aluminum sublaminate on an
aluminum base plate (Table 5-1) (b = 0.5 in., h = 0.03 in.).
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Experimental Procedure

§6.1 Specimen Design and Fabrication

A testing program provides experimental data against which the analytical
'development can easily be verified. The requirements for this experimental program
were: (a) that the test specimens contain well-characterized delaminations; (b) that
the specimens be exposed to uniform loads, implying a uniform far field strain; and
(c) that the sublaminate deformation and growth be closely monitored.

A sandwich construction test specimen (Figure 6-1) was developed of two
Fiberite T300/976 graphite/epoxy face sheets secondarily bonded to an 0.625” thick
aluminum honeycomb core. The honeycomb sandwich construction provided a test
specimen that could be easily loaded in compression without introducing signif-
icant bending moments. One of the face sheets contained a 0.001” thick Teflon
disk between two plies simulating the presence of a delamination. The facesheets
were fabricated from unidirectional T300/976 prepreg tape and cured in an auto-
clave at a maximum temperature of 350°F at 80 psi. The secondary bonding of
the facesheet laminates to the honeycomb was accomplished using a Hysol 250°F

curing film adhesive under 30 psi in the autoclave.
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The experimental parameters were delamination shape (circular or elliptical),
orientation of the ellipse axes, delamination depth in the facesheet, and sublaminate
layup. The specimens were nominally 3” wide by 6” long, and were fabricated
in six groups, designated Series 1 through 6. After trimming, the ends of the
specimens were filled with epoxy potting compound and milled flat and parallel to
one another in preparation for testing. Series 1 through 3 were devoted to specimen
development. Series 4 through 6 comprise the test matrix, the details of which are

shown in Table 6-1.

§6.2 Nondestructive Inspection

Complete characterization of the delamination required an exact determination
of the Teflon insert location in the facesheet. Despite careful positioning of the in-
serts during fabrication of the laminates, trimming and milling operations changed
the reference points. Every specimen was therefore ultrasonically C-scanned (Ap-
pendix I) and the position of the Teflon insert mapped relative to the final dimen-
sions. The location data were essential for the later mounting of the strain gauges.
The C-scan dimensions of the delaminations were often 0.1” larger that the nominal
size of the Teflon inserts, probably due to two phenomena: (a) incomplete bonding
of adjacent plies at the edge of the Teflon, and (b) the lateral resolution of the
C-scan.

The C-scan was capable of mapping out not only the planar extent of the
delamination, but also the depth of the delamination. This was useful as a check on
the specimen fabrication, and particularly in the posttest inspection to\ determine
whether delamination growth had occurred within the original ply interface or had

progressed to other ply interfaces.




Chapter 6: Experimental Procedure

Table 6-1 Test Matrix

Specimen Layup Teflon Orientation Depth* (plies)
4-1 [016 H046) 2” circle 0° 2
4-2 [016 HOy6] 2” circle 0° 4
4-3 [016H046) 2” circle 0° 6
4-4 (016 H0,6] 2” circle 0° 8
5-1 [(029020,902), H(sym)] 2” circle 0° 3
5-2 [(0290202902), H (sym)) 2" circle 0° 4
5-3 [(0290202902), H(sym)) 2” circle 0° 5
5-4 [(0290,02902), H(sym)] 27 circle 0° 8
6-1 [(0290202902), H(sym)] 2" x 1.5” ellipse 0° 4
6-2 [(0290,0290;), H(sym)] 2” x 1.5” ellipse 30° 4
6-3 [(0290,02902),H(sym)] 2" x 1.5” ellipse 60° 4
6-4 [(0290,02902), H(sym)] 2” x 1.5” ellipse 90° 4

* Number of plies from the facesheet surface.

§6.3 Instrumentation

Each specimen was instrumented with nine strain gauges arranged as shown

in Figure 6-2. The individual type, orientation, and purpose of each gauge are

shown in Table 6-2. In general, a single gauge was located at the center of the

sublaminate to record the buckling and postbuckling strains during a test. One

additional gauge was mounted on the front and three on the back facesheets to

measure the far field strains in the specimen. The outputs of these gauges were

used to adjust the relative load distribution between the faces during setup, to

determine the actual load distribution during a test, and as a check against the
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-Sublaminate Side Back Side

Figure 6-2 Specimen strain gauge locations and orientations.

material properties given by the prepreg manufacturers . Four gauges were mounted
on the periphery of the sublaminate, based on the C-scan data, to determine the
onset of delamination growth. Up to the onset of growth, these gauges were also

used to check the uniformity of the far field strains over the specimen.
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§6.4 Testing to Failure

Each specimen was loaded in compression between plattens in an MTS testing

machine. One platten was a ball and socket self-aligning fixture to ensure that the

loads were evenly distributed over the specimen. During each test, the plate was

loaded at a constant displacement rate of .003 in/min. The outputs of all nine strain

gauges (after amplification) and the MTS load cell were digitized and recorded in

a spreadsheet computer file for later data reduction and plotting. Buckling of the

sublaminate was observed, both visually and from the output of the strain gauge

located at the center of the sublaminate. Growth of the delamination was detected

by the four gauges surrounding the delamination. At extreme loads growth was also

_visually observed.

Table 6-2 Strain Gauge Locations and Purposes

Gauge Number

Gauge Type

Orientation*

Purpose

1

© 00 1 O o W N

CEA-06-062UW-350
CEA-06-125UN-350
CEA-06-125UN-350
CEA-06-125UN-350
CEA-06-125UN-350
CEA-06-125UN-350
CEA-06-125UN-350
CEA-06-125UN-350
CEA-06-125UN-350

longitudinal
longitudinal
longitudinal
longitudinal
longitudinal
transverse
longitudinal
transverse

transverse

sublaminate strain
far field - front
far field - back
far field - back
delamination growth
delamination growth
delamination growth
delamination growth

far field - back

* With respect to the load direction.
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Comparison of Experimental and Model Results

§7.1 Introduction

This chapter demonstrates the validity of the delamination behavior model
through a comparison with experimental data. Two kinds of data are required for
this validation: (a) load-strain histories of delaminated sublaminates from the onset
of loading through buckling and into the postbuckling regime, and (b) the load at
which growth of the sublaminate begins.

The experimental data in the literature can be divided into two types. In the
first, experimental investigations have demonstrated the reduction in strength in
composite plates resulting from impact damage. Data from a number of researchers
have been reviewed by Baker et al. [42]. These data are important in that they
were the first to show that a significant i)roblem existed. However, the behavior
of the sublaminate was not characterized in any way. In the second, researchers
implanted a release agent, such as a teflon film, in the laminate during fabrication
to simulate the presence of a delamination. Thus, a flaw of known shape, size,
orientation, and depth in the laminate was introduced. Gillespie and Pipes [4], Wang
et al. [6], Williams et al. [8], Wang and Slomiana [43], and Ramkumar [44] have

simulated delaminations using through-width implants in wide columns. Whitcomb
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[22], Wang and Slomiana [43], Ramkumar [44], Konishi and Johnston [45], Byers
[46], Webster [47], and Geier et al. [48] have simulated delaminations using circular
implants, while Jones et al. {17] and Reddy et al. [49] used rectangular implants and
Kassapoglou [19] used elliptical implants. All have reported some features of the
sublaminate behavior, such as buckling loads or growth loads. None, however, has
reported a complete load-strain history. Therefore, an experimental investigation

using implants was undertaken to generate a data base for validation of the model.

§7.2 Experimental Measurements and Material Properties

Load-strain histories during compression testing were recorded from each of the
nine strain gauges mounted on each specimen. The strain data from gauge number
1, located at the center of the delamination, was used to establish the buckling
and postbuckling behavior of the sublaminate. A typical response is illustrated in
Figure 7-1. The onset of delamination growth and the corresponding growth load
were determined from gauges 5, 6, 7, and 8, which were located on the periphery
of the delamination. Typical responses are shown in Figure 7-2. As gauges 5 and 7
began to deviate significantly from a linear response, the delamination had grown to
include the gauges as part of the larger sublaminate. The growth load was estimated

from the first gauge to show a change in linear behavior.
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The material properties of the cured laminate are shown in Table 7-1. These
material properties were used in all analytical predictions. The compressive load
was applied along the longitudinal z;, axis of the specimens and the sublaminate
orientations were measured counterclockwise with respect to this axis. The fol-
lowing input data were common to all analyses (unless specified otherwise): (a)
temperature difference, AT = —180°F; (b) transverse pressure difference, AP =0
psi; and (c) relative growth direction, 44 = 0. The strains shown in the comparisons
were calculated at the outer surface of the sublaminate plus 0.004 in. to allow for

the strain gauge thickness (x4 = 0.,z =0., z3 = -"—;i + 0.004).

Table 7-1 Material Properties of Fiberite T300/976

Material Propérty Value  Units
Longitudinal Young’s modulus, E, 19.5E6 psi
Transverse Young’s modulus, E, 1.32E6  psi
Poisson’s ratio, v;, 0.30 -
In-plane shear modulus, G., 1.01E6 psi
Out-of-plane shear modulus, G, 1.01E6 psi
Out-of-plane shear modulus, G, 0.50E6  psi

Longitudinal thermal coeff. of expansion, a, 0.50E-6 in
Transverse thermal coeff. of expansion, a, 18.0E-6 —i&
Critical strain energy release rate, G {50] 0.2 i&&,’}l
Foundation modulus, K 1.E6 :—:"{-
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§7.3 Circular Delaminations in Unidirectional Laminated Plates

Test Series 4 investigated the effect of delamination depth on the sublaminate
behavior in unidirectional laminated plates containing circular delaminations. Tests
4-1 through 4-4 used delamination depths of 2, 4, 6, and 8 plies, respectively. A
small hole (0.021” diameter) was drilled through the sublaminate to allow air ingress
to the Teflon implant to eliminate the effect of a transverse pressure differential.
During the tests, specimens 4-1 through 4-3 were observed to buckle at increasing
loads, while specimen 4-4 was loaded to the limit of the testing machine without
buckling. Figure 7-3 shows the measured strains at the sublaminate center (gauge
1) from each experiment. The predicted behavior of each experiment is shown as

- a solid line for comparison. The measured ply thickness (t = 0.00556”) was used
as specific input for the analyses. Experimental and model results agree quite well.
The data from the strain gauges surrounding the sublaminate (gauges 5, 6, 7, 8),
indicating the onset of sublaminate growth, are shown in Figure 7-4. Only specimen

4-2 showed an onset of sublaminate growth, which occurred at the end of the test.

§7.4 Circular Delaminations in Cross Ply Laminated Plates

Test Series 5 investigated the effect of delamination depth on sublaminate be-
havior in cross ply ([(02/902/02/902),H (sym)]) laminated plates containing circular
delaminations. Tests 5-1 through 5-4 used delamination depths of 3, 4, 5, and 8
plies, respectively. Specimens 5-1 ([02/90] sublaminate) and 5-3 ([02/90,/0] sub-
laminate) were specifically intended to investigate the residual thermal strain effect,
since the sublaminate layups were significantly different from the facesheet layup.
A small hole (0.021” diameter) was again drilled through the sublaminate to allow
air ingress to the Teflon implant. During the test, specimens 5-1 through 5-3 were

observed to buckle at increasingly higher loads, while specimen 5-4 was loaded to
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the limit of the testing machine without buckling. Figure 7-5 shows the measured
strains at the sublaminate center (gauge 1) from each experiment. The predicted
behavior of each experiment is shown as a solid line for comparison. The lami-
nate cured ply thickness (¢ = 0.00609”) was measured and used as specific input
for the analyses. The buckled region of each specimen in this series appeared not
to extend over the full Teflon implant area but rather to have a shorter buckling
dimension in the loading direction. The analyses confirmed that these specimens
would preferentially buckle in multiple half waves in the loading direction and a
single half wave in the tranverse direction. The analyses of specimens 5-1 and 5-3
also indicated a small but noticable effect of the thermally induced load, in this
case reducing the buckling load. The data from the strain gauges surrounding the
sublaminate (gauges 5, 6, 7, 8), indicating the onset of sublaminate growth, are
shown in Figure 7-6. Specimens 5-1 through 5-3 experienced sublaminate growth

transverse to the applied load as indicated by peripheral gauges 5 and 7.

§7.5 Elliptical Delaminations in Cross Ply Laminated Plates

Test Series 6 investigated the effect of delamination orientation on sublaminate
behavior for cross ply ([(02/902/02/902),H(sym)]) laminated plates containing el-
liptcial delaminations. Tests 6-1 through 6-4 used 2.0” by 1.5” elliptical Teflon
implants oriented at 0°, 30°, 60°, and 90° to the applied load, respectively. Each
implant was 4 plies deep in the facesheet. No hole was drilled through the sub-
laminate so that any effect of transverse pressure might be observed. Buckling
was observed in each specimen, followed by sublaminate growth. As in Series 5,
the buckled region of each specimen appeared not to extend over the full Teflon
implant area but rather to have a shorter buckling dimension in the loading direc-

tion, which was confirmed by analysis. Figure 7-7 shows the measured strains at
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the sublaminate center (gauge 1) from each experiment. The predicted behavior of
each experiment is shown as a solid line for comparison. The laminate cured ply
thickness (¢ = 0.00609”) was measured and used as specific input for the analy-
ses. Experiment and model results generally agree quite well. The data from the
strain gauges surrounding the sublaminate (gauges 5, 6, 7, 8), indicating the onset
of sublaminate growth, are shown in Figure 7-8. The observed growth direction
was transverse to the applied load as indicated by peripheral gauges 5 and 7. The
predicted growth load for specimens 6-1 and 6-2 was based on a relative growth

parameter of %—% = 0, while for specimens 6-3 and 6-4, it was based on %—‘g- = 100.

§7.6 Buckling and Growth Loads

The measured buckling loads are compared to the buckling loads predicted
by the nonlinear equilibrium method in Figure 7-9. The measured and predicted
growth loads are shown in Figure 7-10. The figures include the experimental and
prediction uncertainties (Appendix J). The error bars shown are plus and minus
three standard deviations. The dashed line in each figure represents perfect agree-
ment between experiment and calculation.

The buckling results show generally good agreement between prediction and
experiment. The growth results show reasonable agreement. The prediction errors
for the growth results are large due to large uncertainty in the critical strain energy
release rate. Considering the uncertainties in the experimental data and the uncer-
tainties in the analyses, it would appear that the analysis method describes with

reasonable accuracy the experimental data.
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Figure 7-9 Measured versus predicted buckling loads. Error bars are plus and
minus three standard deviations (see Tables J-1 and J-3).
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Figure 7-10 Measured versus predicted growth loads. Error bars are plus and
minus three standard deviations (see Tables J-1 and J-3).




Chapter 8

Sample Problem and Discussion

§8.1 Introduction

The analytical and experimental verifications performed in Chapters 5 through
7 demonstrated the model performance over a range of input variables and load-
ing conditions. The uncertainty analysis (Appendix J) determined not only the
overall uncertainty in the experimental data and code predictions, but the relative
sensitivity of the model to specific input variables. In general, the input variables
can be grouped into three types in terms of their influence on the buckling load,
postbuckling strain, and growth load (Table 8-1): (a) variables which are physically
well-characterized and for which the results are highly sensitive, (b) variables which
are physically well-characterized but for which the results show little sensitivity,
and (c) variables which, for a variety of reasons, are poorly characterized and thus
may exert a large influence on the results. This chapter discusses the effects of this

last group of variables in the context of a sample problem.

§8.2 Sample Problem Description

The sample problem chosen corresponds to Experiment 6-1. The plate is a

69
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16 ply symmetric cross ply laminate ([0,/90,/0,/90;],) fabricated from Fiberite
T300/976 graphite/epoxy (see Table 7-1 for material properties). A 2.0 in. by 1.5
in. elliptical delamination lies 4 plies deep in the plate. The ellipse major axis is
aligned with the load axis. The plate is subjected to uniform compression along the
major axis of the ellipse as shown in Figure 8-1. A complete list of the nominal input
variables is shown in Table 8-2. Note that z,, z2, and z3 are the coordinates in the
sublaminate, and in this instance are coincident with the z;/, 4/, £3+ coordinate
system of the plate (see Figure 3-1). The strains shown in the examples were
calculated at the outer surface of the sublaminate plus 0.004 in. to allow for the

strain gauge thickness (z; = 0.,z =0., 3 = !‘.T' + 0.004).

Table 8-1 Code Input Variable Sensitivities

Sensitive Insensitive
Well- Ellipse major semi-axis, a Long. Young’s modulus, E,
Characterized Ellipse minor semi-axis, b Tran. Young’s modulus, E,
Ellipse orientation, 6 Shear modulus, G,
Ply thickness, ¢; Long. thermal expansion, a,

Tran. thermal expansion, a,

Temperature change, AT

Poorly Critical strain energy release, G,
Characterized Growth direction parameter, %‘i-
Foundation modulus, K

Transverse pressure load, AP
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In each example that follows, one variable has been allowed to change over a
realistic range of possible values to illustrate the effect of that variable while holding
all other input variables constant. The effects of each variable on the calculated
response are shown individually in the following sections. Recommendations for

designers are summarized in the last section.

EERE, {

1

T300/976
[0/90 /0 /90 ]
22 2 2% |
a=1.00 inch a |
b=0.75 inch x |
- A 2 b I
— I"- 4 Plies
—|  |=— 16 Plies

NN A

Figure 8-1 Sample problem description. Input variables are given in Table 8-2.
Material properties are given in Table 7-1.

§8.3 Geometry Effects

It is well known from classical buckling theory that the buckling load of the
sublaminate varies in proportion to the cube of the thickness and inversely with
the square of the lateral dimensions of the sublaminate. For a designer studying
the effects of manufacturing-induced disbonds or impact-caused delaminations, the

thickness and shape of the sublaminate may be the source of major uncertainty.
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The effect of changing the nominal ply thickness in the sample problem on the
calculated load-strain history of the sublaminate is illustrated in Figure 8-2. The
three cases represent successive changes of 0.0002 inch to the ply thickness. The
buckling and growth loads are shown versus the ply thickness in Figure 8-3. The
buckling load and growth load increase by roughly 100 1bf/in with the total 0.0005

in. thickness variation.

Table 8-2 Sample Problem Input Variables

Variable Value Units
Material T300/976

Layup (0,9020290;),H(sym)
Delamination depth 4 plies
Ellipse major semi-axis, a 1.00 in
Ellipse minor semi-axis, b 0.75 in
Ellipse orientation, 8 0. degrees
Ply thickness, ¢; 0.00556 in
Critical strain energy release rate, G, 0.20 "'—;",!’1
Relative growth direction parameter, %‘i- 0

Contact law foundation modulus, K 1.E6 ﬁ"
Normal load in the 1 direction, v, 1.

Normal load in the 2 direction, v, 0.

Shear load in the 1-2 plane, v4 0.

Change from reference temperature state, AT -180. °F

Transverse pressure load, AP 3. psi
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Figure 8-2 Effect of changing ply thickness on the compressive load-strain re-
-sponse of the sample problem described in Figure 8-1. Results calcu-
lated by the DELAM code.
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Figure 8-3 Effect of changing ply thickness on the bucklini and growth loads of

the sample problem described in Figure 8-1. ts calculated by

the DELAM code.
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The effect of a change in the lateral dimension of the sublaminate on the load-
strain behavior is more dramatic than the effect of a thickness change. The effect
of 0.05 inch successive changes in the transverse “b” dimension of the delamination
ellipse on the load-strain behavior of the sample problem sublaminate is shown in
Figure 8-4. The larger diameter sublaminates are much more compliant than the
smaller sublaminates. The trends of the buckling and growth loads versus the ellipse
semi-axis dimension are shown in Figure 8-5. As expected, the loads decrease with
an increase in the semi-axis. These effects are particularly important because in
practice, the lateral dimensions of a delamination may only be known to about the

accuracy shown in this figure.

| §8.4 Contact Model Effects

The contact model represents the physical restraint to deflection of the sub-
laminate posed by the plate containing the delamination. The key to the model
is the value of the foundation modulus K (Equation 3.31). No value for K has
been measured for graphite/epoxy. A rationale for estimating K from the tranverse
elastic modulus of the foundation E; and a characteristic length Iy is discussed in
Appendix D. For the materials used here, E; ~ 1.0 Msi and /; = 1.0 inch yielding
a foundation modulus K ~ 1.z10~¢ f—:’;‘ (see Equation 3.32). Figure 8-6 illustrates
the effect on the load strain history of the sublaminate of successive changes in the
foundation modulus K. The value of K = 0 indicates that the contact model was
not used. An incease in the foundation modulus corresonds to an increase in the
stiffness of the response. Varying the value of the foundation modulus has almost no

effect on the buckling and growth loads of the sublaminate, as shown in Figure 8-7.
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Figure 8-4 Effect of changing the semi-minor axis “b” of the ellipse on the com-

Applied Load, N (1bffin)

pressive load-strain response of the sample problem described in Fig-
ure 8-1. Results calculated by the DELAM code.
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Figure 8-5 Effect of changing the semi-minor axis “b” of the ellipse on the buck-

ling and growth loads of the sample problem described in Figure 8-1.
Results calculated by the DELAM code.
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Figure 8-6 Effect of changing the contact law foundation modulus K on the com-
pressive load-strain response of the sample problem described in Fig-
ure 8-1. Results calculated by the DELAM code.
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Figure 8-7 Effect of changing the contact law foundation modulus K on the buck-
ling and growth loads of the sample problem described in Figure 8-1.
Results calculated by the DELAM code.



Chapter 8: Sample Problem and Discussion 77

§8.5 Transverse Pressure Effects

The transverse pressure model describes the effects of subatmospheric pres-
sure in the cavity formed by the sublaminate as it buckles away from the plate.
Since there is no method to measure the actual AP across the sublaminate, the
uncertainty associated with AP may be large. Figure 8-8 illustrates the effect of
the pressure differential on the load-strain response of the sublaminate. Figure 8-9

shows the increasing buckling and growth loads with increasing pressure differential.

§8.6 Growth Model Effects

The growth model requires a parameter, %‘i-, describing the shape of sublami-
nate growth, and a material property, G, which is the critical strain energy release
rate of the material. Neither is well-characterized [50]. The effect of changing values
of %ﬁ- on the calculated growth load of the sample problem is illustrated in Figure 8-
10. The lowest value is clearly %‘i— = 0, and the growth load increases sharply with
increasing values of %‘-5. Figure 8-11 depicts the dependence of the growth load on
the critical strain energy release rate. As shown, the growth load increases strongly

with increasing G..
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Figure 8-8 Effect of changing the transverse pressure AP on the compressive
load-strain response of the sample problem described in Figure 8-1.
Results calculated by the DELAM code.
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Figure 8-9 Effect of changing the transverse pressure AP on the buckling and
growth loads 0?1: sample problem described in Figure 8-1. Results
calculated by the DELAM code.
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Figure 8-10 Effect of changing the growth model parameter -ﬁ- on the compressive

load-strain response of the sample problem described in Figure 8-1.
Results calculated by the DELAM code.
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Figure 8-11 Effect of changing the critical strain energy release rate G on the
growth loads of the sample problem described in Figure 8-1. Results
calculated by the DELAM code.
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§8.7 Summary and Recommendations

The sample problem shown has demonstrated the sensitivity of the model to
certain input variables, in particular the sublaminate geometry, the foundation mod-
ulus, the transverse pressure differential, and the growth parameter and critical
strain energy release rate. In summary, none of the variables affect the prebuckling
behavior of the sublaminate whereas all of them affect the postbuckling load-strain
behavior. Of the variables affecting the buckling load and growth load, the sub-
laminate thickness ¢t and the foundation modulus K were shown to have a minor
effect. In contrast, the sublaminate lateral dimension “b,” the pressure difference
AP, and the growth parameter %‘i and the critical strain energy release rate G,
were all shown to significantly affect the buckling and growth loads. Therefore,
the following choices are recommended to designers for conservative analysis: (a)
the lateral dimensions should be chosen large, (b) the pressure difference should be
zero (which is likely since the pressure can equalize through cracks), (c) the growth
parameter %% should be systematically evaluated to find the lowest growth load,

and (d) the critical strain energy release rate should be as low as practical.




Chapter 9

Concluding Remarks

A model was developed to describe the behavior of delaminated composite
plates subjected to compressive in-plane loads. The delaminated region is assumed
to be elliptical, and may be located between any two plies of the laminate. The axes
of the ellipse may be arbitrarily oriented with respect to the applied loads. The
model calculates thé displacements, strains, and stresses in the plate containing
the delamination, and in the sublaminate created by the delamination. The model
solves the nonlinear equilibrium equations describing the sublaminate up through
large postbuckling deflections of the sublaminate. In particular, the model pre-
dicts the loads applied to the plate at which first buckling and then growth of the
sublaminate will occur.

A computationally efficient computer implementation of the model was devel-
oped. The code has a user friendly interface, and is intended to be used for design
calculations.

A new set of experimental data on the behavior of Fiberite T300/976 graphite/
epoxy laminated plates containing simulated delaminations and loaded in compres-
sion was used to validate the model performance. The sublaminate load-strain
histories were described at a level of detail not previously available in the literature,

and will prove useful in future delamination studies.
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The model currently describes a single delamination, and the behavior of the
sublaminate is assumed not to affect the behavior of the plate in which it is con-
tained. The effects of multiple delaminations, and the interaction of the sublaminate

and plate, are suitable topics for future investigations.
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Appendix A

Engineering Constants for Isotropic and Orthotropic Materials

This appendix identifies the ply plane stress reduced stiffnesses Q;; used in
Chapter 3 in terms of ordinary engineering elastic constants for isotropic and or-
thotropic materials. In addition, the transformation matrix relating on-axis and

* off-axis stiffnesses is given.

§A.1 Engineering Constants

The on-axis lamina constitutive relations for an orthotropic material in plane

stress are
Oz Q::z sz 0 0 0 €z
Ty Qey @y O 0 0 €y
owl=| 0 o @, 0 0 & (A.1)
or 0 0 0 Q- O €
s 0 0 0 0 Q,/ \e

where x and y are the in-plane principal material axes of the lamina, p refers to the
transverse y-z plane, r to the transverse x-z plane, and s to the in-plane x-y plane.

In terms of engineering constants, the stiffnesses for an orthotropic material are

Q:z = /88— ny = E'

1—veyvye 1 —veyvy,:

_ _ UsyBy
Qzy =
1- VeyVyz (A.2)

QPP =0y Qrr = Gr Qu =G,
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E; = Longitudinal Young's modulus

E, = Transverse Young’s modulus

vzy = Major Poisson’s ratio

vyz = Minor Poisson’s ratio

Gp = Transverse shear modulus in the y-z plane

G, = Transverse shear modulus in the x-z plane

G, = Transverse shear modulus in the x-y plane

For an isotropic material the relationships are simpler. In terms of engineering

constants the stiffnesses for an isotropic material are

E E vE
sz——'T__yz QVV=1_V2 sz:l_yz

Qpp=G Q=G Qes=G

(A.3)

where
E = Young's modulus
v = Poisson’s ratio

G = Shear modulus = -277‘_'%-;,7

§A.2 Transformation Matrix

The off-axis lamina constitutive relations for an orthotropic material in plane

stress are
o1 Qu Qiz O 0 Qe €1
o2 Quz Q2 0 0 Qs €2
o4 | = 0 0 Qu Qs 0 €4 (A.4)
os 0 0 Q4 Q@ss O €5
O6 Qs Q2 O 0 Qs €6

where 1 and 2 are the in-plane body axes of the lamina, 4 refers to the transverse
2-3 plane, 5 to the transverse 1-3 plane, and 6 to the in-plane 1-2 plane. The

transformation matrix relating the off-axis stiffnesses to the on-axis stiffnesses is
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(Qn \ ( m? nt 2m?n? 0 0 4m?n? \
22 nt mt 2m?2n? 0 0 4m?n?
Q12 m2n? min? mit4nt 0 0 —4m?n? Q-
Qes m?n? m?n?  -2m2n? 0 0 (m? — n?)? Qyy
Q16 m3n —mn® mnd® - mdn 0 0 2(mn3 —mdn) Qzy
Q26 mn® —-m®n m3n-—mnd 0 0 2(m3n—mn3) g”’
Qa4 0 0 0 m:2 n 0 Q"
Qus 0 0 0 —_mn mn 0 o

\ Q@ss ) \ 0 0 0 n? m 0 /

(A5)

where m = cosf, n = sinf, and 6 is the angle between the on-axis and off-axis coor-
dinate systems, defined as positive in the counter-clockwise direction. Equation A.5
is given for the negative transformation, meaning that the ply on-axis stiffnesses are

rotated to the body off-axis coordinates.



Appendix B

Integration of the Plate Strain Expressions

This appendix details the integration of the plate strain expressions (Equation
3.12) given in Chapter 3. The strain field in the plate is constant and uniform over
the plate. The strains were derived in terms of constants ¢; describing the plate

(Equation 3.13), the load N, and the residual thermal strains °? IT (Equation 3.14):

! a1 e’
) ={c | N+ |27 (B.1)
oeg' c6 oeg'T

In terms of the displacements u; the strains are

'u"
oell" %:
opl | — 8%} (B.2)
°e:' orurl - onud!
’ ot

Combining Equations B.1 and B.2 and integrating the first two expressions yields

°u’l" =(a N+ °e‘1"T)z1 + f(z2)
(B.3)
ul! = (e;N + 2 Tzg + g(1)

where f and g are arbitrary functions of z, and z,, respectively. The in-plane shear

strain %k’ can then be expressed as
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0, p’ o, pl
o pl 6 a df(:l:g) dg(ml) N o plT B4
“ 3:1:2 + 63:1 = dz, + dzr, T el e (B4)
Since the strains in Equation B.1 are constant, f(z2) and g(z;) can be at most
linear functions of z; and z,, respectively. Assuming that no rigid body rotation of

the plate occurs, then [54]

o} ool
63:2 821 =0 (B.5)
or, combining Equations B.4 and B.5
ooup! _ 8°uf o
6:1:2 = -a-; = -( csN + °&5'T) (B.6)

Finally, 5%(:7’2 and 4‘4:7‘2 are easily integrated and substituted into Equation B.3 to

yield the in-plane displacements in the plate

1 °
uf! = (1N + €T )er + 5(coN + 6" )z
2 B.7
opl _ 1 o_pIT o pIT (B.7)
up = 5(ceN + %" )z1 + (2N + " )z2



Appendix C

Basic Assumptions of Nonlinear Plate Theory

This appendix states the basic assumptions of the nonlinear plate theory used
in the main text. In particular, the plausibility of some of the assumptions is
demonstrated via an order of magnitude calculation. The motivation for this chapter
| was derived from the realization that the Kirchhoff-Love assumption (that normals
to the midsurface remain normal) was an integral assumption in von Karman'’s
nonlinear large deflection plate theory. The appropriate and consistent nonlinear
strain measures for the shear deformable plate theory are developed subsequently

[41, 51].
§C.1 Basic Assumptions

Given: A plate geometry. A body B is defined by two parallel surfaces and an
edge surface joining them such that characteristic in-plane (z; and z2 coordinates)

lengths (L) are much greater than the through-the-thickness (z3) length (k).
h< L (C.1)

Assumption 1: Tangential displacements u; and u; are infinitesimal but the trans-
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verse displacement uj is on the order of the plate thickness.

uy,us ~ small

(C.2)
Uz ~ O(h)
Assumption 2: Derivatives of displacements are moderate to small.
au" h h 2 ..
e N — — = 2 0-3
3z, O(L)orO(L) ,7=1,2,3 (C.3)

Assumption 3: Linear strain parameters e;; are small, and linear rotation parame- |

ters w;; are moderate.

R 1 an auJ h 2 . .
€ = 5(6_:1:, + 59:_,) O(E) t,7=12,3 (C4.a)
1 0Ou; 6uj h .o
“is =3(3s, " 35, ~O(7) Bi=123 (€58)

Assumption 4: In-plane rotations are small.

wyz ~ O(%)2 (C.6)

§C.2 Order of Magnitude Estimates !

\)
\]! L o~N(® +L?) /\ oi(;l) 55
T . N

Figure C-1 Order of Magnitude Estimates for Displacements and Derivatives
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To see why the above assumptions are reasonable, consider a plate with length
dimensions of L and thickness h, with a transverse displacement on the order of h
at one end (Figure C-1). In the deformed configuration the plate will have been
stretched, rotated, and thinned by this displacement with respect to the original
configuration. With respect to a Cartesian coordinate system fixed in the original
reference configuration (Lagrangian description), the change in tangential in-plane

displacement with respect to the in-plane coordinate is of the order

Ou, O(\/L§+hi—L)
3z1 L

L1+ (42 -
o 3 (eAy
~0(1+%(%)2+...—1)

~

~0(3)?

Similarly, the change in transverse displacement with respect to the in-plane coor-
dinate is of the order

6u3

=~ op) (C)

The change in the transverse displacement with respect to the transverse coordinate

due to rotation (the shear effect is smaller) is of the order

Ous h(cosg—;‘f -1)
5z " a—
~O(1 - l 6“3 )2 ~1) (C.9)
hoo
O(L)

Similar estimates for the remaining derivatives can be made so that, in summary,
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. the derivative order of magnitudes are
Ouy 2 Ou, h ., Gus
F 0( ) 7ol o(z) Fr 0( )
6u1 2 Ou, k., 3u3
3z, 0( ) 3z, ~ 0() ;. 0( ) (C.10)
6U1 BUQ h au3 2
dz3 O( ) Oz3 O(L) 9z ~0(z )

as stated in (C.3).

Using the estimates for the magnitudes of derivatives (C.10), the plausibility

of Assumption 3 for linear strain and and rotation parameters can be checked. For

example,
_ Ouy Ouz Ous 2
i1 = _BT ~ 0( ) €92 = EL'— ~ 0( ) €33 = E— O( ) (C.ll)
. The linear shear strain parameters and the rotation parameters must be examined

carefully. In particular, the algebraic values of the derivatives g%’_i are opposite in
sign to the algebraic values of %‘_} for a rigid body rotation. Thus, the linear shear
strain parameters are really difference equations and the rotations simply additive.

Therefore, Assumption 3 actually states that the difference in derivatives is small.

That is,

1 8u 0 h h h

en =5(5 +5-0) ~ 0(3)! —O(3)* ~ O(3)°
1 Ou 0 h h h

e = 5(55 + 55 ~ 0(7) ~ 0(p) ~ O(3)*
1 0u 0 h h

e2s = = (o2 + —“—“) ~O0(3 Ry - 0(2) ~ 02y

Wiz = -2'(5;; - a—zl) ~ O(f) +0(f) ~ O(z)
1 Ou Ou h h h

wis = -2-(5;:; - a—zj) ~ O(f) + 0('1'5) ~ 0(2)

_ 1 6u2 6u3 h h h
‘ “’23_5(6_:;3_29—5 ~0(3)+0(3)~0(3)
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§C.3 Rationale and Consequences

In the above, we implicitly used a Lagrangian description of the system. That
is, within a fixed Cartesian coordinated system, the deformation of the plate was
described in terms of the reference undeformed configuration of the plate. The

appropriate stress measure in the Lagrangian description [52] is the 2nd Piola-

Kirchhoff stress tensor aP ~K which, in terms of the Cauchy stresses as, is
P-K _ Po 92} 9z3 oC (C
o 13
0‘.] Pe azc axﬂ Tap ( )

where p, and p. are the mass densities in the reference and current configurations,
respectively, and z? and z¢ particle locations in the reference and current configu-
rations. The appropriate strain measure [52] for the Lagrangian description is the

Green-Lagrange strain tensor

1 Ou; 6u, n Oup Ouyg

=3 Oz; + O0z; Oz, 6z,)

(C.14)

The 2nd Piola-Kirchhoff stress tensor and the Green-Lagrange strain tensor
are energy conjugate to one another [53]. That is, the strain energy of the system
calculated by these two measures in the reference coordinates is equal to the strain
energy calculated in the current coordinates using Cauchy stresses and infinitesimal
strains. Thus, we have defined a plate theory involving large transverse deflec-
tions, moderate rotations, and small strains. For nonlinear analysis, the following

observations can be made.

C.3.1 Stresses
The Cauchy stresses, expressed in terms of the 2nd Piola-Kirchhoff stresses and

the derivatives of displacement already discussed, are

c - a’ui Ou; 6u Ou;
0§ = ol + Gings + gt + 5o )opa <L (C19)
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where §;; is the Kronecker delta and u; and z; are with respect to the reference

configuration. Given the magnitudes of the displacement derivatives (C.10), the

consequence of these assumptions is that, to first order, the Cauchy stresses and

2nd Piola-Kirchhoff stresses are equal. Therefore, the stress and moment resultants

defined elsewhere in this thesis will also be approximately equal. There is no further

need to distinguish reference and current configurations when discussing stress.

C.3.2 Strains

The components of the Green-Lagrange strain tensor (C.14) and the order of

magnitude of the various displacement derivatives are:

6 a'U2

€11=a—— "((a )2"'( )2+(
eu ~O{(3)% (%)‘, (%)4,
en=-§—“—2+1((§:‘)’ (G2 + (2
w~OUFY, (3 (%)‘,
=322+ 2y + (a4 (G2

€33 NO{(E)z’ (%)2v (%)2a

)2)
(f)2}
)2)
(z)z}
)2)
(2)4}

1 6“1 6u2 6u1 Bu, 6u2 6142 + 3u3 3u3

‘1z = 5(622 + oz, + 0z, 0z, 0z, 0z, OJOz, axg)

h
a~O(Ph (B @ (b

1 0u; Ouz Ou; Ouy Oug Oug

()

Ous Ous

‘13 = 5(62:3 + 0z, + 01, 013 + 0z, 03 Oz, 6::3)
h h h h
€13 ~ 0{(1')’ (f)? (2)3’ (2)37

(2}

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)
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e = l(auz Ous Oup Ouy + Ou, Ouy  Ous Ous
37 9\ 0z, Oz, Oz90z3 Oxy0z3 Ozq 0r3

a~Ol(), (P (PN (5 (Y

Neglecting terms of (%)3 and higher, and recalling the arguments for the magnitudes

(C.21)

of the linear portions of the strains (C.12), it is apparent that

1.) Only the in-plane strains retain nonlinear terms, and
2.) With the exception of €33, these terms are derivatives of the transverse dis-

placement u3.

In this regard €33 deserves a special note. Recalling the estimate of the magni-
tude of %:—:: due to rotation (C.9), it is apparent that %}: and %—}: are algebraically
opposite (similar to the linear shear strain terms). This makes sense in that a strict
rigid body rotation should produce no strain. For moderate rotation deformation
the rigid body portion of that motion should vanish. The difference between these
terms will be due to any effect of shear on €33 (arguably of order (%)3) and the
term %%:- will be due to Poisson thinning. (These are obviously beam-like simplifi-
cations.) Thus, a reasonable summation of appropriate nonlinear strain measures

for the above assumptions in a compact form is

i,j=1,2,3 (C.22)

1 8u; | Buj | Ous dus
“ =305 *

Oz; + Oz; Oz j)
That is, the strain-displacement relations von Karman assumed are entirely appro-
priate in the context of moderate rotation, small strain shear deformation theory.
For large strains, particularly large shear strains, appropriate nonlinear terms will
have to include the effects of the assumed shear deformation mode in the nonlin-

earities.




Appendix D

Contact Model Foundation Modulus

The contact model requires the foundation modulus K of the plate as a material
property input. For graphite/epoxy composite materials no measured value of K
is available. The purpose of this appendix is to describe a method for estimating
this property. The vertical displacement v of a semi-infinite plate subjected to a
uniform pressure loa.& g acting on a portion of the plate, as shown in Figure D-1, is

[54]

29
v= —E2a log a (D.1)

where the displacement is evaluated at the origin, E is Young’s modulus, and 2a is

the width over which the pressure acts. Rearranging Equation D.1 gives

mFE
= — D.2
? 4a log a’ (D-2)
The contact model is stated as
_JAP—-Ku$! ui!>0
f= {AP u;' <0 (D-3)

where f is the contact force per unit area and u®' is the displacement of the sub-

laminate. Identifying ¢ with f and v with u®', the foundation modulus K may be
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estimated from

TE
= D4
4a log a (D-4)
More simply, the foundation modulus is estimated by
~ £ (D.5)
Iy

where Ey is the elastic modulus of the foundation and I; a characteristic length.

X3

Figure D-1 Uniform pressure load acting on a semi-infinite plate.



Appendix E

Parallel Axes Theorem for Unsymmetric Laminates

This appendix describes the calculation of laminate stiffnesses for generally
unsymmetric laminates. A;j, B;;, D;j, Eij, Fij, Hij are laminate stiffnesses defined

in Equation 3.34 as

A,'i
(Aij’Bij’Dij’Eij’Fij’Hij)= / Q"j(l,z31x§’$g’z;7zg)dx3 ivj=1,2,6
.'I"i
(Aij, Dij, Fij) = / Qi;(1,23,23)dzs i,j =4,5
sl

-t
(E.1)

For a laminate composed of plies of varying thicknesses or an odd number of plies
the laminate midsurface may fall within a given ply. It is computationally simple
to calculate the laminate stiffnesses in a coordinate system originating on the lam-
inate outer surface, and then to use the parallel axis theorem [23] to determine the

stiffnesses in a coordinate system located at the laminate midsurface.

For a primed coordinate system located a distance d from the laminate mid-

surface as shown in Figure E-1, the laminate stiffnesses are calculated from
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d+A5
[ / ! I —- 2 .3 .4 .5 .6 -
Dl]’ :J?F:pGus :'j)" /Q;j(l,z3,x3,x3,m3,za,za)d:cs ,7=12,6

a2t
d+ay
(AlJ" iJo )_ / Q'J(1 $3,$3)d23 aJ = 4 5

4=ty

(A}

ijs :p

(E.2)
Notice that the stiffness G}; is required. The laminate stiffnesses in the unprimed
plate midsurface coordinate system are then determined using the parallel axis

theorem as
Aij = Aj;
B;; = Bj; — dA;j
D;; = D;; —2dB;; - d?A;j
E;; = E}; — 3dD;; - 3d*B;; — d* A;; (E.3)
Fij = Fj; — 4dE;; — 6d’D;; — 4d°B;; — d*A;;
Gi; = G;; — 5dF;j — 10d’E;; — 10d°D;; — 5d* B;; — d° A;;
H;j = Hl; — 6dG;j — 158> F;; — 20d° E;; ~ 15d* D;; — 6d°B;; — d® A,
Each equation requires the result of the previous equation to complete the calcula-

tion. The distance d is, in general, arbitrary. However, in the particular case here,

d is equal to half the sublaminate thickness "—;'
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X= h/2 X'3= d+h/2

x,= -h/2 ;1 x,= d-h2
d

Figure E-1 Laminate thickness direction coordinate systems located at the plate
midsurface (z3) and an arbitrary distance d from the plate midsurface

(z3)-




Appendix F

Strain Energy Release of an Elliptical Sublaminate

This appendix details the derivation of the strain energy release of an elliptical
sublaminate (Equations 3.41 and 3.43). The total potential energy II and area A
of an elliptical plate are functions of the semi-major and semi-minor axes a and b,

respectively, of the ellipse.
II =1I(a,b,...) A = mab (F.1)

Taking differentials of both yields

oIl on
dll = E—da + "aTdb dA = n(bda + ada) (F.2)

Combining the differentials gives the strain energy release per unit area

a1 $Bda+ Pdb

_— F.
dA w(bda+ ada) (F3)
or
9l da 3l
dl _ 2 + 50 (F.4)

dA = n(b9% + a)
In the particular instance of a sublaminate in a composite plate, the calculation is

made for each system, [T1?! and II*.
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DELAH SAHPLE INPUT/0UTPUT

ok ok 3K K K ok o o ol ok ok K KK oK ok e ok ok sk ke ok ok ok ok ok ok ok ke K ok ok K 3Kk ok o ok ko ok ok kK K ok K Kok K

THIS IS PROGRAM DELAMN,
COPYRIGHT 1989 BY SCOTT OWEN PECK

STRUCTURES AND COMPOSITES LABORATORY
DEPARTHENT OF AERONAUTICS AND ASTRONAUTICS
STANFORD UNIUERSITY, STANFORD, CALIFGRNIA
(415) 723-4135

GIVEN A LANINATED COMPOSITE PLATE CONTAINING AN
ELLIPTICALLY SHAPED DELAMINATION, DELANM WHILL
CALCULATE THE FOLLOUWING:

(1) THE CRITICAL LORD APPLIED TO THE PLATE NECESSARY
TO CAUSE BUCKLING OF THE SUBLANMINARTE CREATED BY
THE DELANINATION,

(2) THE NONLINERR LOAD-STRAIN HISTORY OF THE
SUBLAMINATE, AND

(3) THE CRITICAL LOAD APPLIED TO THE PLATE NECESSARRY
TO CAUSE THE ONSET OF DELAMINATION GROHTH.

2R R R R R R RS R R R R R R R R R R R RS R R 22 s R R s s s b2l

DELAN 1S BASED ON A NONLINEAR PLATE THEORY

INCLUDING THE EFFECTS OF LARGE TRANSUERSE DEFLECTIONS
OF THE SUBLANINATE AND TRANSUERSE SHEAR OEFORMATION.
THE ASSUNPTIONS ABOUT THE PLATE AND SUBLAHINATE ARE:

(1) THE PLATE CONTAINING THE DELAMINRTION IS
SYHHETRICALLY LAMINATED,

(2) THE DELANINATION MAY OCCUR BETUEEN ANY TuUO
PLIES, AND THEREFORE THE SUBLAHINATE HAY
BE UNSYMMETRICALLY LAMINATED.

(3) THE ELLIPTICAL SUBLAMINATE MAY BE ARBITRARILY
ORIENTED UITH RESPECT TO THE APPLIED LOADS.

(4) THE PLATE FORNMS A DETACHED ELASTIC FOUNDATION
FOR THE SUBLAMINATE, UHICH NODELS POSSIBLE
CONTACT BETWEEN THE THO.

(5) A TRANSUERSE PRESSURE DIFFERENTIAL MAY ACT
ACROSS THE SUBLANINARTE THICKNESS DUE TO
SUBATMOSPHERIC PRESSURES IN THE CAUITY FORHED
BETUEEN THE SUBLRMINATE AND PLATE.

(6) GROUTH OF THE SUBLAMINATE WILL OCCUR
UHEN THE TOTAL POTENTIAL ENERGY RELEASED 8Y
SUBLANINATE - PLATE SYSTEN EXCEEDS THE
CRITICAL VALUE FOR THE PARTICULARR HATERIAL.
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(RS2 ER R R RS R R 2 R 2 R 2 R 2R R R R R R R R R R R R R R R R R RS SRR RS

DELAN OPERATES IN ONE OF TUO MODES: PROMPTED

AND DATA FILE. IN THE PROMPTED HODE YoU WILL BE QUERIED
FOR EACH ([NPUT PARAMETER. IN THE DATA FILE NODE, THE
INPUT DATA IS ASSUNED TO BE IN A USER DATA FILE,

AND YOU MWILL BE ASKED ONLY FOR THE NAME OF THE FILE.

AT THE END OF THE [NPUT PROCESS IN PROMPTED MNODE,

YOU UWILL BE ASKED WHETHER YOU UWOULD LIKE THE INPUT

TO BE SAUED IN AN INPUT FILE FOR FUTURE ANALYSES.

(12222222 R R R 2R R R RS R R R 2R R R R R R 2R R R R R R R R R R R R R R )

HOULD YOU LIKE THE NORHAL PRINTGUT (0),

MORE PRINTOUT (1), OR LOTS OF PRINTOUT (2) ?
0

WoULD YOU PREFER PRONPTED [NPUT (P)

OR TO READ YOUR I[NPUT FRGM A BATA FILE (D)?
[

2R 2222 R R RS RR 2222 R 2 2R R R s 22 R 2222 2R s b s s a2t R i b2 bR 22t R

THE FOLLOUWING INPUT DESCRIBES THE GEOMETRY ANO
HATERIALS OF THE ELLIPTICAL DELAMINATION.

THE INPUT UNITS ARE IN ANY SELF-CONSISTENT
SYSTEN THE USER DESIRES.

ELLIPSE SENI-NAJOR AXIS?
1.0

ELLIPSE SENMI-HINOR AXIS?
0.75

ROTATION OF THE ELLIPSE W.R.T. THE PLATE?
0.

NUNBER OF PLIES IN THE WHOLE PLATE?
16

NUNBER OF PLIES IN THE SUBLAMINARTE?
’

THE PLIES ARE NUNBERED FROM THE TOP SURFRCE TO THE BOTTOR SURFACE.
SHOULD EACH PLY HAVUE THE SANE THICKNESS? (V/N)
Y

PLY THICKNESS =
.00556

THE ORIENTATION OF EACH PLY IS POSITIVE FROM THE PLATE COORDINATE AXIS
TO THE PLY AXIS.

PLY NUMBER 1t  ORIENTATICN =

PLY NUNBER 2 ORIENTATION =
0.



PLY
90.

PLY
90.

PLY
90.

PLY
90.

PLY
0.

PLY
0.

SHOULD EACH PLY HAUE THE SANE SET OF ENGINEERING CONSTANTS? (VY/N)

Y

LONGITUDINAL YOUNGS HODULUS EX

NUNMBER

NUNBER

NUNBER

NURBER

NUHBER

NUNBER

NUNBER

NUHBER

NUNMBER

NURBER

NUNBER

NUNHBER

NUNBER

NUHBER

19.5E6

TRANSUERSE YOUNGS MODULUS EY

1.32E6

LONGITUDINAL TO TRANSUERSE POISSON RATIO NUXY

.30

11

12

14

15

16

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTRTION

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTATION

ORIENTARTION

SHEAR HODULUS GXY =
1.01E6

SHEAR MODULUS GX2 =
1.01E6
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SHEAR MODULUS GYZ2 = 110
0.50E6

‘ LONG. THERNAL (HYGRO) COEFF. OF EXP. RLPX(1) =
0.50E-6

TRAN. THERMAL (HYGRO) COEFF. OF EXP. ALPY(l) =
18.E-6

(AR R R R R SR R R 2 S R 2 R R R R R R R R R R RS E SR RSS2 E RS2

THE FOLLOUWING INPUT DESCRIBES THE LOADING
CONDITIONS ON THE PLATE:

TEMPERATURE (HYGRO) ODIFFERENCE FROM REF. DELTA T =
-180.

TRANSUERSE PRESSURE LORDING DELTA P =
3.

USE CONTACT LAH? (Y/N)
Y

CONTACT LAUW COEFF CON1?
1.E6

CRITICAL STRAIN ENERGY RELEASE PER UNIT AREA =
0.2

‘ RELATIVE GROUTH ODIRECTION DA/DB =
0.
THE RELATIVE LOAD MAGNITUDES IN THE PLARTE
COORDINATE SYSTEM (1-PRINE, 2-PRINE).
(FOR EXAMPLE, BNt = 1, BN2 = G, BN6 = 0

IS A SINGLE LOAD APPLIED IN THE t-PRIRE
DIRECTION.)

BNt =
1.0

BN2 =
0.

BN6 =
0.
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122222 R 2R R R 2R R 22 R R R RS2 R SRR R R R R R R R R R R RS R R EY

AT HOW NANY LOCATIONS I[N THE DELAMINATION DO YOU
WISH STRESS/STRAIN CALCULATIONS?
NLIST =

1

INPUT 1 PAIRS OF COORDINATES:

LISTR( 1) =
0.

LISTY( 1) =
0.

HOULD YOU LIKE THE STRESSES/STRAINS TO BE CALCULATED

AT THE TOP (T), MIDOLE (M), OR BOTYON (B) OF EACH PLY?

THE THROUGH-THICKNESS COORDINATE ORIGINRTES MITH THE FIRST
PLY OF THE SUBLAMINATE AND PROCEEDS UNTIL THE LAST PLY OF THE
PLATE. THUS, THE BOTTOM OF THE FIRST PLY IS THE SUBLAMINATE
OUTER SURFACE, AND SO ON.

I 22 RS R R R S22 R0 2R 2222222222222 2R 2222 i ii b b i i b 2 2 2 2 8

THE FOLLOUING INPUT PRESCRIBES MUHICH CODE
ANALYSIS OPTIGNS UILL BE RUN:

NONLINEAR LORD-STRAIN HISTORY? (VY/N)
Y

OUTPUT STRAIN FILE NANE?
SANPLE.STRAIN

OUTPUT STRESS FILE NANE?
SANPLE.STRESS

MAXINUN LOAD FOR POSTBUCKLING PLOT?
-3000.

NUNBER OF LOARD INCREMENTS FOR PLOT?
5

CALCULATE POSTBUCKLING GROUTH LOARD? (Y/N)
Y

CALCULATE LINEAR BUCKLING LOAD? (Y/N)
Y

SHOULD THE INPUT DATA BE MRITTEN TO A FILE FOR FUTURE USE? (Y/N)
Y

OQUTPUT FILE NANE?
SANPLE. INPUT
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L ER R R R S 2 R R R R R R R R R R R R R R R R R R R R R R R R SRR

‘ INITIAL 2 COORDINRTES
PLY 2
1 0.00e+00
2 0.56e-02
3 0.11e-01
4 0.17e-01
S 0.22e-01%
6 0.28e-01
7?7  0.33e-01
8 0.39e-01
9 0.44e-01
10 0.50e-01
11 0.56e-01
12 0.61e-01
13  0.67e-01
14 0.72e-01
1S 0.78e-01
16 0.83e-01
17 0.89e-01

PLANE STRESS REDUCED STIFFNESSES FOR EACH PLY

PLY XX vy oxy Qss Qx2x2 Qvzyz

. 1 0.20e+08 0.13e+07 0.40e+06 0.10e+07 0.10e+07 0.50e+06
2 0.20e+08 0.13e+07 0.40e+06 0.10e+07 0.10e+07 0.50e+06

3 0.20e+08 0.13e+07 0.40e+06 0.10e+0? 0.10e+07 0.50e+06

4 0.20e+08 0.13e+07 0.40e+06 0.10e+0? 0.10e+07 0.50e+06

S 0.20e+08 0.13e+07 0.40e+06 0.10e+07? 0.10e+07 0.50e+06

6 0.20e+08 0.13e+37? 0.40e+06 0.10e+07 0.10e+07 0.S50e+06

? 0.20e+08 0.13e+07 0.40e+06 0.10e+07 0.10e+07 0.50e+06

8 0.20e+08 0.13e¢+07 0.40e+06 0.10e+07 0.10e+0? 0.50e+06

9 0.20e+08 0.13e+07 0.40e+06 0.10e+07 0.10e+07 0.50e+06

10 0.20e+08 0.13e+07 0.400+06 0.10e+0? 0.10e+07 0.50e+06
1 0.20e+08 0.13¢+07 0.40e+06 0.10e+07 0.10e+07 0.50e+06
12 0.20e+08 0.13e+0? 0.40e+06 0.10e+07 0.10e+07 0.50e+06
13 0.20e+08 0.13e¢+0? 0.40e+06 0.10e+t07? 0.10e+07 0.50e+06
14 0.20e+08 0.13e+07 0.40e+06 0.10e+07 0.10e+07 0.50e+06
1S 0.20e+08 0.13e+07 0.40e+06 0.10e+07? 0.10e+0? 0.50e+06
16 0.20e+08 0.13e+0? 0.40e+06 0.10e+07 0.10e+07 0.50e+06



OFF-AXIS REDUCED STIFFNESSES IN

PLY

_.
ComuoanNnawrn —

-t -t .
AN SN

PLY

OR~ANAOWNSWN -

10
1"
12
13
14
15
16

OFF-AXiS REDUCED STIFFNESSES

PLY

DN -

PLY

DN -

Q11

0.20e+08
0.20e+08
0.13e+07
0.13e+07
0.20e+08
0.20e+08
0.13e+07
0.13e+07
0.13e+07
0.13e+07
0.20e+08
0.20e+08
0.13e+07
0.13e+07
0.20e+08
0.20e+08

044

.50e+06
.50e+06
.10e+07?
.10e+07
.50e+06
.50e+06
.10e+07
. 10e+07
. 10e+07
10e+07
.50e+06
.50e+06
.10e+07
.10e+07
.50e+06
.50e+06

CO0O00O000po0DODOOOOO

Qi

0.20e+08
0.20e+08
0.13e+07
0.13e+07?

044

0.50e+06
0.50e+06
0.10e+07
0.10e+07

Q22

.13e+07
.13e+07
.20e+08
.20e+08
.13e+07
.13e+07?
.20e+08
.20e+08
.20e+08
.20e+08
.13e+07
.13e+07
.20e+08
.20e+0Q8
.13e+07
.13e+07

OO0O00O0OO0OO0pooDOODOODOO

045

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+Q0
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

0O00OO0COO0OO0ODO0OODOODDOOOOO

Q22

0.13e+07
0.13e+07
0.20e+08
0.20e+08

045

0.00e+00
0.00e+00
0.00e+00
0.00e+00

N

.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06
.40e+06

CO0OO0O0O0O0O0CoOODODOODODOO O o

Q55

.10e+07
.10e+07?
.50e+06
.950e+06
.10e+07
.10e+07
.50e+06
.50e+06
.50e+06
.50e+06
.10e+07
.10e+07
.50e+06
.50e+06
.10e+07
. 10e+07

CO0CO0OO0ODO0O0LOOO0ODOOOODOOO

Qi12

0.40e+06
0.40e+06
0.40e+06
0.40e+06

QS5

0.10e+07
0.10e+07
0.50e+06
0.50e+06

THE PLATE COORDINATES

Q66

.10e+07
.10e+07
.10e+07
.10e+07
+10e+07
.10e+07?
.10e+07
.10e+07
.10e+07
.10e+07
.10e+07
.10e+07
.10e+07
.10e+Q?
.10e+07
.10e+07

0CO0OO0OO0O0O0OO0CODODOODOOOOO

Q66

0.10e+07
0.10e+07
0.10e+07
0.10e+07

16

=)

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00

QOO0 O00D0O0O0ODOOOLOOODOOO

Q16

0.00e+00
0.00e+00
0.00e+00
0.00e+00

g26

.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+00
.00e+0Q0
.00e+00
.00e+Q0
.00e+00
.00e+00

0O0000DO0OO0O0O0LOO0O0O0O00OLLOOOO

IN THE SUBLAMINATE COORDINARTES

Q26

0.00e+00
0.00e+00
0.00e+00
0.00e+00



LANINATE STIFFNESSES FOR THE PLATE

0.93e+06

A44

0.67e+0S

Bt1

0.73e-11

D44

0.39e+02

Ft1

0.11e+0t

F 44

0.42e-01

H11

R22

0.93e+06

A45

0.00e+00

B22

0.00e+00

04S

0.00e+00

F22

0.36e+00

F45

0.00e+00

H22 |

A12

0.35e+05

ASS

0.67e+05

B12

-.68e-12

0SS

0.50e+02

F12

0.28e-01

FS5

0.63e-01

H12

0.17e-02 0.36e-03 0.39e-0¢

R66 A16

0.90e+05 0.00e+00

B66 B16

0.45e-12 0.00e+00

Fé6 Fi16

0.70e-01 0.00e+00

H66 H16

0.99e-04 0.00e+00

LANINATE STIFFNESSES FOR THE SUBLAMNINATE

At1

A22

Af2

0.23e+06 0.23e+06 0.89e+04

Ad4

A4S

ASS

0.17¢+0S 0.00e+00 0.17e+05

Bt

-.11e+04

D44

0.69e+00

B22

0.11e+04

D4S

0.00e+00

B12

-.11e-12

DSS

0.69¢+00

A66 Alé6

0.22¢+05 0.00e+00

B66 816

~-.28e-12 0.00e+00

A26

0.00e+00

B26

0.00e+00

F26

0.00e+00

H26

0.00e+00

A26

0.00e+00

B26

0.00e+00
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Fi F22 F12 F66 Fi6 F26 115

0.71e-03 0.71e-03 0.27e¢-04 0.69e-04 0.00e+00 0.00e+00

F44 F45 FS55

0.51e-04 0.00e+00 0.S51e-04

H11t H22 H12 H66 H16 H26

0.63e-07 0.63e-07 0.24e-08 0.61e-08 0.00e+00 0.00e+00

ERRXERBABEREEEXEEEEEEELEREEAER A AR R XX SRS AR R LR AR IR AR UK AR R R R KRR AR KKK KK

LINEAR BUCKLING LOAD CALCULATION:

THE LINEAR BUCKLING LOAD 1S -0.67792e+03

(222 R 2R R R R 2 2222 R R s 2 R R R R R R R R R R R R R RS

GROWTH LOAD CALCULATION:

UARN ING: CONTACT BETHEEN SUBLANINATE AND PLRTE

UARNING: CONTACT BETUEEN SUBLAMINATE AND PLATE

UARNING: CONTACT BETHEEN SUBLAHINATE AND PLATE

HARNING: CONTACT BETHEEN SUBLANMINATE AND PLATE

UARNING: CONTACT BETHEEN SUBLAMINATE AND PLATE

HUARNING: CONTACT BETUEEN SUBLAMINATE AND PLATE

HARNING: CONTACT BETWUEEN SUBLAMINATE AND PLATE

THE GROUTH LOAD IS -0.17666e+04 ITER = S



STRESSES AND STRAINS AT (X,¥) =
FOR LOAD N =

OFF-AXIS STRESSES

PLY

> W N -

OFF-RXIS STRAINS

PLY

1
2
3
4

ON-AXIS STRESSES

PLY

> DN -

ON-AXIS

PLY

- W N -

OFF-AXIS STRESSES

PLY

- LN -

St

~.17e+05
-,38e+05
0.46e+03
-.13e+04

E1

-.10e~-02
-.20e-02
0.76e-04
-.96e-03

S

.17e+05
.38e+05
. 18e+0S
.220+03

(= =]

El

-.10e-02
-.20e-02
0.90e-03
0.31e-04

-.17e+05
-.308e+05
0.46e+03
-.13e+04

-0.17666e+04

§2

0.73e+04
0.57e+0¢
0.18e+05
0.22e+03

E2

0.58e-02
0.49e-02
0.90e-03
0.31e-04

§2

0.73e+04
0.57e+0¢
0.46e+03
-.13e+04

STRAINS IN THE

E2

0.586-02
0.49e-02
0.76e-04
-.96e-03

§2

0.73e+04
0.57e+04
0.18e+05
0.220+03

S3

0.00e+00
0.0Ce+00
0.00e+00
0.00e+00

€3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

S3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

( 0.000e+00,

S¢

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE PLY FRANE

S4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

PLY FRANE

X

C.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE PLATE

83

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E4

0.0CGe+00
0.00e+00
0.00e+00
0.00e+00

FRANE
sS4
0.00e+00
0.00e+00

0.00e+00
0.00e+00

IN THE SUBLAMINARTE FRANE

SS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE SUBLAMINATE FRARE

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

SS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

§S

0.00e+00
0.00e+00
0.00e+00
0.00e+00

0.000e+00)

[~ N~ =N~} oo o [— = W= B ] o000

[= = =y =]

S6

.00e+00
.00e+00
.00e+00
.00e+00

E6

.00e+00
.00e+00
.00e+00
.00e+00

S6

.00e+00
.00e+00
.00e+00
.00e+00

ES

.00e+00
.00e+00
.00e+00
.00e+00

S6

.00e+00
.00e+00
.00e+00
.00e+00
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OFF-AX1S HMECHANICAL STRAINS

PLY

Lk B S I

2R R 2R 22 R 2 R R R R R R R 2R 2 s R RS R R R s R 2R R 2R AR R R R R D )

Et

. 75e-03
.18e-02
.28e-02
.39e-02

E2

0.29e-02
0.20e-02
0.11e-02
0.28e-03

E3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

iIN THE PLATE FRAMNE

ES

0.00e+00
0.00e+00
0.00e+00
0.00Ge+00

NONL INEAR LORD-STRAIN HISTORY CALCULATION:

STRESSES AND STRAINS AT (X,Vv) =
FOR LOAD N =

OFF-AX1S STRESSES

PLY

> WN -

OFF-AXIS STRAINS

PLY

> DN -

ON-AX1S STRESSES

st

37e+04
~.38e+04
0.38e+04
0.38e+04

El

-,250-03
-.25e-03
0.29e-02
0.29e-02

0.00000e+00

$2

0.38e+0¢4
0.38e+04
-.37e+04
.38e+04

E2

0.29¢-02
0.29e-02
-.25e¢-03
.25e-03

PLY S §2
1 -.37e¢+04 0.38e+04
2 -.38¢+04 0.38e+0¢
3 -.37e+04 0.38e+04
4 «.38e+04 0.38e+04
ON-AX!S STRAINS IN THE
PLY El E2
1 -.25e¢-03 0.29e-02
2 -.25e¢-03 0.29e-02
3 -.25e¢-03 0.29e-02
4 -.25¢-03 0.29e-02

83

0.00e+00
0.00e+00
0.0Ce+00
0.00e+00

E3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

83

0.00e+00
0.0Ce+00
0.00e+00
0.00e+00

PLY FRARE

E3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

( 0.000e+00,

S4

0.00e+00
0.00e+00
0.00e+00
0.0Ce+00

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE PLY FRAHE

sS4

0.00e+00
0.00e+00
0.00e+G0
0.00e+00

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE SUBLAHINATE FRANE

SS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE SUBLAMINATE FRAMNE

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

sS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

0.000e+00)

$6

.00e+00
.00e+00
.00e+00
.00e+00

(=~ =~ ]

Eé

.00e+00
.00e+00
.00e+00
.00e+00

O00Oo

$6

.00e+00
.00e+00
.00e+00
.00e+00

(= = = =]

E6

.00e+00
.00e+00
.00e+00
.00e+00

[= 3 =N =3 =)
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OFF-RX1S STRESSES

PLY

DN -

OFF-AXIS MECHANICAL STRAINS

PLY

DN -

S1

.37e+04
.38e+(4
.38e+04
.38e+04

[ = == T B |

Ef

0.11e-06
.80e-07
.27e~-06
.47e-06

S2

0.38e+04
0.38e+04
-.37e+04
-.38e+04

E2

0.8Ce-06
0.47e-06
0.13e-06
-.21e-06

S3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

STRESSES AND STRAINS AT (X,Y) =
FOR LOAD N =

OFF-AX1S STRESSES

PLY

> WN =

OFF-AXIS STRAINS

PLY

> W -

ON-AXIS STRESSES

PLY

- WA -

Si

.16e+0S
.16e+05
.29e+04
.29e+04

oo

El

-.89e-03
-.90e-03
0.230-02
0.23e-02

st

-.16e+05
-.16e+05
-.35e+04
.35e+04

§2

.35e+04
.35e+04
.35e+04
.35e+04

[ = Y~

E2

0.29e-02
0.29e-02
=-.23¢-03
.23e-03

s2

0.35e+04
0.35e+0¢4
0.29e+04
0.29e+(14

-0.60000e+03

S3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

S3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE PLATE FRANE

S4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

SS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE PLATE FRANE

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

( 0.000e+00,

sS4

0.00e+00
0.0CGe+00
0.00e+00
0.00e+00

E4

0.00e+00
0.00e+00
0.00e+00
0.G0e+00

IN THE PLY FRAHE

S4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE SUBLAMINATE FRANE

$S

0.00e+00
0.C00e+00
0.00e+00
0.00e+00

IN THE SUBLANINATE FRANE

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

S5

0.00e+00
0.00e+00
0.00e+00
0.00e+00

[= N =M=}

(=2 = = —]

0000 (=~~~

[= N = = )

sé6

.00e+00
.00e+00
.00e+00
.00e+00

E6

.00e+00
.00e+00
.00e+00
.00e+00

.000e+00)

$6

.00e+00
.00e+00
.00e+00
.00e+00

E6

.00e+00
.00e+00
.00e+00
.00e+00

S6

.00e+00
.00e+00
.00e+00
.00e+00
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ON-AX1S STRAINS

PLY

> W N -

OFF-AX1S STRESSES

PLY

> W -

OFF-AXIS NECHANICAL STRAINS

PLY

> DN -

3

-.89%e-03
.90e-03
.23e-03
.23e-03

S1

.16e+0S
.16e+05
.29e+04
.29e+04

oo

E1

-.64e-03
-.64e-03
-.65e-03
.65e¢-03

E2

0.29e-02
0.29e-02
0.23e-02
0.23e-02

§2

0.35e+04
0.35e+04
-.35e+04
.35e+04

E2

0.25e-04
0.250-04
0.2Se-0¢4
0.24e-04

IN THE

PLY FRAME

E3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE PLATE

S3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

EJ

0.00e+00
0.00e+00
0.00e+00
0.00e+00

STRESSES AND STRAINS AT (X,¥) =
FOR LOAD N =

OFF-AX1S STRESSES

PLY

OFF-AXIS STRAINS

PLY

1
2
3
4

El

-.150-02
-.15e-02
0.16e-02
0.16e-02

§2

0.33e+04
0.33e+04
-.33e+04
-.33e+04

E2

0.29e-02
0.29e-02
.20e-03
.20e-03

-0.12000e+04

$3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E3

0.0Ce+00
0.00e+00
0.00e+00
0.00e+00

E4

0.00e+00
0.00e+Q0
0.00e+00
0.00e+00

FRANE
S4
0.00e+00
0.00e+00

0.00e+00
0.00e+00

IN THE PLATE

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

ES

0.00e+00
0.00e+Q0
0.00e+00
0.00e+00

sS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

FRANE
ES
0.00e+00
0.00e+00

0.00e+00
0.00e+00

( 0.000e+00,

S4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E¢

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE SUBLAMINATE FRANE

§5

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE SUBLANINATE FRANE

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

=~ =] [= N B =N =}

[N - -N-]

[— - -~

o000

E6

.00e+00
.00e+Q0
.00e+00
.00e+00

$6

.00e+00
.00e+00
.00e+00
.00e+00

€6

.00e+00
.00e+00
.00e+00
.00e+00

.000e+00)

$6

.00e+00
.00e+00
.00e+00
.00e+00

E6

.00e+00
.00e+00
.00e+00
.00e+00
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ON-AX1S STRESSES

IN THE PLY FRAMNE

SS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

sS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

FRANE
ES
0.00e+00
0.00e+00

0.0Ce+00
0.00e+00

PLY S1 $2 $3 S4
1 -.29e+05 0.33e¢+04 0.00e+00 0.00e+00
2 -.29e+0S 0.33e+04 0.00e+00 0.00e+00
3 -.33e+04 0.21e+04 0.00e+00 .0.00e+00
4 -.33e+04 0.21e+04 0.00e+00 0.00e+00
ON-AXIS STRAINS [N THE PLY FRANE
PLY el E2 E3 E4
1 -.15¢-02 0.29e-02 0.00e+00 0.00e+00
2 -,15e-02 0.29e-02 0.00e+00 0.00e+00
3 -~-.20e-03 0.16e-02 0.00e+00 0.00e+00
4 -.20e-03 0.16e-02 0.00e+00 0.00e+00
OFF-AXIS STRESSES IN THE PLATE FRANE
PLY S1 s2 S3 sS4
1 -.29e+05 0.33e+04 0.00e+00 0.00e+00
2 -.29e+05 0.33e+04 0.00e+0C 0.00e+00
3 0.21e+04 -.33e+04 0.00e+00 0.00Ce+00
4 0.21e+04 -.33e+04 0.00e+00 0.00e+00
OFF-AX1S MNECHANICAL STRAINS IN THE PLATE
PLY E1 E2 E3 X
1 -.13e-02 0.50e-04 0.00e+00 0.00e+00
2 ~-.,13e-02 0.50e-04 0.00e+00 0.00e+00
3 -.13e-02 0.49e-04 0.00e+00 0.00e+00
4 -.13e-02 0.49e-04 0.00e+00 0.00e+00
UARNING: CONTACT BETUEEN SUBLAMINATE AND PLATE

STRESSES AND STRAINS AT (R,v) = (

FOR LOAD N =

OFF-AX1S STRESSES

PLY

- WN -

S1

~-.17e+05
-.38e+05
0.41e+03
-.13e+04

§2

0.74e+04
0.58e+04
0.18e+05
0.67e+03

-0.18000e+04

$3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

S4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

0.000e+00,

{N THE SUBLANINATE FRANE

§S

0.00e+00
0.00e+00
0.00e+00
0.00e+00

(=N~ -] [= 3 = 3 - 3y =] oO0o0o

0oo0oo0o

[~ N -N-N-}

S6

.00e+00
.00e+00
.00e+00
.00e+00

E6

.00e+00
.00e+00
.00e+00
.00e+00

$6

.00e+00
.00e+00
.00e+00
,00e+00

E6

.00e+00
.00e+00
.00e+00
.00e+00

.000e+00)

Sé

.00e+00
.00e+00
.00e+00
.00e+00
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OFF-AX1S STRAINS IN THE SUBLAMINATE FRANE 121

PLY El E2 E3 E4 ES E6
1 -,10e-02 0.58e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
2 -.21e-02 0.50e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
3 0.30e-04 0.93e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00
4 -.10e-02 0.55e-04 0.00e+00 0.00e+00 0.00e+00 0.00e+00
ON-AX1S STRESSES IN THE PLY FRANE
PLY St S2 $3 S4 SS S6
1 ~.17e+05 0.74e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00
2 -.38e+05 0.58e+04 0.00e+00 0.00e+00 0.00e+QC 0,00e+Q0
3 0.18e+05 0.41e+03 0.00e+00 0.00e+00 0.00e+00 0.00e+00
4 0.67e+03 -.13e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00
ON-AXIS STRAINS [N THE PLY FRARNE
PLY E1 E2 E3 €4 ES E6
1 ~-.10e-02 0.58e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
2 ~.21e-02 0.50e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
3 0.93e-03 0.30e-04 0.00e+00 0.00e+00 0.00e+00 0.00e+00
4 0.55e-04 -.10e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
OFF-AX1S STRESSES IN THE PLATE FRANHE
PLY St S2 S3 S4 S5 $6
1 -.17e+05 0.74e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00
2 -.38e+05 0.58e+04 0.00e+00 0.00e+00 0.00e+00 0.00e+00
3 0.41e+03 0.18e+05 0.00e+00 0.00e+00 0.00e+00 0.0Ce+00
4 -.13e+04 0.67e+03 0.00e+00 0.00e+00 0.00e+00 G.0Ce+00
OFF~AX1S NECHANICAL STRAINS IN THE PLATE FRANE
PLY El E2 E3 X | ES ES
1 ~.75¢-03 0.29¢-02 0.00e+00 0.00e+00 0.0Ce+00 0.00e+00
2 ~-.18e-02 0.21e-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
3  -.29¢-02 0.12¢-02 0.00e+00 0.00e+00 0.00e+00 0.00e+00
¢ -.39e-02 0.31e-03 0.00e+00 0.00e+00 0.00e+00 0.00e+00

HARNING: CONTACT BETUEEN SUBLAMINATE AND PLATE




STRESSES AND STRAINS AT (X,Y) =
FOR LOAD N =

OFF-AX1S STRESSES

PLY S
1 -.19e+05
2 -.47e+05
3 -.38e+03
4 -.27e+0¢4

OFF-AXIS STRAINS

PLY El

DN -
[ |

ON-AXIS

PLY S

W -
(=2 =]

ON-AXIS

PLY E

WA -
[ =20 = 0 B |

OFF-AXIS STRESSES

PLY S

DN -
]

.11e-02
.25e-02
.74e-03
.22e¢-02

1

.19e+0S
.47e+0S
.30e+0S
.92e+04

STRESSES

§2

0.85e+04
0.66e+04
0.30e+05
0.92e+04

E2

0.67e-02
0.57e-02
0.15e-02
0.51e-03

§2

0.85e+0¢
0.66e+04
-.38e+03
.27e+04

STRAINS IN THE

11e-02
.25e-02
.15e-02
.S51e-03

1

.19e¢+0S
.47e+05S
.38e+03
27e+04¢

E2

0.67e-02
0.57e-02
-.74e-03
-.22e-02

S2

0.85e+04
0.66e+04
0.30e+05
0.92e+04

-0.24000e+04

83

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E3

0.00e+00
0.0Ce+00C
0.00e+00
0.GCe+00

s3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

( 0.000e+00,

S4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE PLY FRANE

S4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

PLY FRANE

E3

0.00e+00
0.0Ce+00
0.00e+00
0.00e+00

IN THE PLATE

$3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

E4

0.00e+00
0.00e+00
0.00e+00
0.00e+00

FRANE
St
0.00e+00
0.00e+00

0.00e+00
0.00e+00

IN THE SUBLAMINATE FRANE

$5

0.00e+00
0.00e+00
0.00e+00
0.00e+00

IN THE SUBLAMINATE FRANE

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

$S

0.00e+00
0.00e+00
0.00e+00
0.00e+00

ES

0.00e+00
0.00e+00
0.00e+00
0.00e+00

SS

0.00e+00
0.00e+00
0.00e+00
0.00e+00

0.000e+00)

[= ==

[ =~ = =]

OO0 Oo

oo0oo0oo

oo o

S6

.00e+00
.00e+00
.00e+00
.00e+00

E6

.00e+00
.00e+00
.00e+00
.00e+00

S6

.00e+00
.00e+00
.00e+00
.00e+00

€6

.00e+00
.00e+00
.00e+00
.00e+00

S6

.00e+00
.00e+00
.00e+00
.00e+00
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OFF-AX1S HECHANICAL STRAINS

PLY El
1 -.84e-03
2 -.22e-02
3 -.36e-02
4 -.51e-02
UARN ING:

E2

0.38e-02
0.28e-02
0.18e-02
0.76e-03

E3

0.00e+00
0.00e+00
0.00e+00
0.00e+00

STRESSES AND STRAINS AT (X,V) =
FOR LOAD N =

OFF-AX 1S STRESSES

PLY

- WN -

OFF-AX1S STRAINS

PLY

> N -

ON-AXIS STRESSES

PLY

> WA -
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Appendix H

Total Potential Energy Change of an Isotropic Plate

The change in the total potential energy G of an isotropic, circular plate sub-
jected to a transverse pressure g, with respect to a change in the area A = wa? of

the plate is

dl 1
G= ~a 2na (H.1)

where the total potential energy II is calculated from

a 2x a

/(a',-e,. + o€y)rdrdzdf — //qowr dr dé (H.2)
0 00

2x
_1/
T2
0

The plate thickness is h, the radius a, and (r, 8, z) are cylindrical coordinates. The

S~

wi>

transverse displacement of the plate is w. The radial and circumferential stresses,

respectively, are calculated as

N, z dzw 1dw
N, 1dw
o = h 12Dh3 (l/d 2 ;I) (H4)
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where N, and N, are the radial and circumferential stress resultants and the bending

stiffness D of the plate is

EhR3

D=wa—m

(H.5)

E is Young’s modulus, and v is Poisson’s ratio. The radial and circumferential

strains, respectively, are

— — 2 —
er=—"+ 0.5( - ) —z 57 (H.6)

u, zdw
“«=T-la (H.7)

where u, is the radial displacement of the plate. The circumferential stress resultant

N t is related to the radial stress resultant by
N (1 N ) (‘H 8)
¢ dr r )

and the radial displacement u, is related to the radial stress resultant by

r , dN,

u= G

+(1 - v)N,) (H.9)

A perturbation solution is developed by Chia [41] by expanding the transverse
displacement w, the pressure ¢,, and the radial stress resultant N, in terms of the
displacement at the center of the plate w,. The transverse displacement is expanded

as

w = h(w; = + wa(S2)°) (H.10)
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where
wy = £2 (H.11)
ws = 5= (- (1 - (o L o3 4867 +26) ()
and
1'2
E=1- = (H.13)

The radial stress resultant is expanded in terms of the center displacement as

3
N = E (5220 400 (5209 (H.14)

where

= +{+0+6) (H.15)

and

(€+62+€3)

84 =

(1- %) (160 - 104y 80— 52
7560 1- 2 1- (H.16)
_S0L-20 4 oo ggee _ 957)

1—-v

The transverse pressure load is expanded in terms of the center displacement

16ER*
= 173 - 13v)(2)* H.17
qo 3(1 V2)04( 360(1 + V)( 7 3V)( ) ) ( )
For a Poisson’s ratio v = 0.3, the change in the total potential energy (Eq. H.1)
was evaluated as a function of the normalized center displacement as
Gat

e _ Wo 2 Wo va _6 _8 064E—5 10
TS 2.930( - )2+1.586( - )4+0.1279( =2 )% +0.003048(—=)®+8.006 ( T 2)

(H.18)
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Similarly, the transverse pressure (Eq. H.17) was evaluated as

qoa4
Eht

= 5.860(-'%’-) + 3.657(3”,;3 3 (H.19)

These equations were then parametrically evaluated to determine the relationship

between the applied transverse pressure and the change in total potential energy.



Appendix I

Ultrasonic Nondestructive Examination

Every specimen in the experimental portion of this dissertation was ultrason-
ically examined before and after compression testing. The ultrasonic scanning,
commonly known as C-scanning, was performed in the Structures and Composites
Laboratory on equipment built and programmed by the author. The C-scans pro-
vided a planar map of each specimen showing the lateral extent of delamination and,
in particular, the depth in number of plies of the delamination at every point. The
data were used before testing to precisely locate the teflon implants to apply strain
gauges to the specimen surface, and to map the extent of delamination growth after
testing.

The C-scan equipment consists of: (a) an ultrasonic flaw detector (Kraut-
kramer Branson USL 48), (b) an immersion tank and specimen positioning fix-
tures, (c) a bridge with stepper motors to drive the ultrasonic transducers back
and forth over the specimen (Trienco Model 705), and (d) a computer to perform
data acquisition and control functions as well as to display the color output (IBM
PC/AT with IBM data acquisition card). The C-scan was operated by a FOR-
TRAN computer program that controlled the movement of the transducer bridge,

collected the data, and converted the data into a graphical display.

The C-scan operation is based on generating a pulse of ultrasonic sound by a
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transducer. The pulse travels through a coupling medium (water) to the specimen.
At every interface between two dissimilar media, part of the signal will be reflected
and part transmitted. Thus, there will be reflected signals from the top and bottom
surfaces of the specimen as well as from any delaminated surfaces in between. In
the pulse/echo method, the first signal returning from the top surface is used as
a trigger and the time for subsequent signals to arrive is measured. Knowing the
speed of sound in the material, the time of flight measurements are converted to
thicknesses. The thicknesses are finally displayed as depths to the delamination at

that point or, if there is no delamination, as the overall thickness of the specimen.



Appendix J

Uncertainty Analysis

§J.1 Experimental Uncertainty

Uncertainty in the experimental data occurs due to variations in specimen fab-
rication, preparation, strain gauging, testing, data acquisition, and data reduction.
The purpose of thi.s analysis is to estimate the uncertainty in a measured load
associated with a given value of strain. Each experiment had four strain gauges
mounted away from the delamination whose purpose was to measure the far field
strain (gauges 2, 3, 4, and 9, Figure 6-2, Chapter 6). The response of these gauges
should nominally be the same for a given experiment series, and thus may serve as
replicate strain readings. For example, Figure J-1 shows the measured load versus

strain from gauge 3 for each of the four experiments in Series 5.

The method used to calculate the experimental uncertainty is to first fit a linear
least squares regression line to the data, and then to estimate the experimental
uncertainty from the differences, or residuals, between the regression line and each
data point [55, 56]. The estimate of the data experimental uncertainty, o4, is
calculated from

N;N; — Died?
04 = ———* (J.1)
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where o4 i8 one standard deviation, N; is the applied load per unit specimen width
corresponding to a single data point, ¢; the associated strain, and n the number of
data points (repeated subscripts imply summation). The estimated experimental
uncertainties for gauges 2, 3, and 4 from each test series are summarized in Table J-
1. Gauge 9 was not included because it was transversely oriented, and therefore
substantively different from gauge 1, the gauge of primary interest in the delamina-
tion studies. The estimated uncertainty for Test Series 4 gauge 3 is very large. One
gauge from this series was clearly different from the others, indicating a systematic

and not random variation.
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Figure J-1 Load versus strain from each gauge 3 of Experiment Series 5.
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Table J-1 Estimated Standard Deviation ¢4 in the Data

Gauge 2 Gauge 3 Gauge 4

Test Series 4 43.7 604. 52.5
Test Series 5 57.6 63.8 68.5
Test Series 6 150. 126. 142.

§J.2 Prediction Uncertainty

Random uncertainty in the model predictions is due to errors in the input data

propagating through the code. The response surface method may be used to es-

timate this uncertainty [57, 58, 59]). The model predictions N are evaluated for

different combinations of perturbations to the input data z;, termed the experi-
mental design, where the perturbations are plus or minus one standard deviation
o; of the input variable about its nominal mean value u;. The model responses so
generated are used to fit a truncated Taylor’s series expansion in the input vari-
ables, which is then used to estimate the prediction uncertainty. The Taylor’s series

expansion of the model is
ON
N(zi) = N(pi) + g—(zi —pi) + ... (/.2)

The model prediction uncertainty oy for a calculated load N is estimated to first

order from
oN‘ = (6—0.’)2 (J.3)

where the o; are one standard deviations of the input variables.
The uncertainty in the model prediction was estimated for the particular case

of Experiment 6-2. Table J-2 lists the means and standard deviations for fourteen
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input variables considered in the analysis. The experimental design was a 214~10
fractional factorial design, meaning that 24 cases would have to be run to include
every possible combination of plus and minus factors, but that only a 21 fraction of
the full design was run (16 cases). In this case only the linear terms of the Taylor’s
series expansion could be estimated.

The model prediction uncertainties were estimated for four different loads: (a)
the linear buckling load, (b) the nonlinear buckling load, (c) the growth load, and
(d) the load at 1000 microstrain (postbuckling regime). The mean values of the
model predictions and the associated one standard deviations are listed in Table J-
3. The transverse pressure was specifically not included in the uncertainty analysis
even though the model is known to be sensitive to it since there was no way of
estimating the uncertainty in it. For a graphical sense of the model prediction
uncertainty, Figure J-2 shows the load versus strain responses corresponding to the
sixteen different cases run in the uncertainty analysis.

The uncertainty in the growth load is dominated by the uncertainty in the
critical strain energy release rate which, as discussed in Chapter 7, is not well char-
acterized for the material used in these experiments. By contrast, the estimated
prediction uncertainty in the growth load without a contribution from the critical
strain energy release rate is 54.9 Ibf/in. Similarly, the uncertainty in the postbuck-
ling load is dominated by the strain gauge thickness uncertainty. Without this

contribution the uncertainty in the load at 1000 microstrain is 177. 1bf/in.
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Table J-2 Input Variable Uncertainties in Experiment 6-2
Variable 7 o Units

1 Contact law, K 1.E6 0.5E6 24
2 Sublaminate major semi-axis, a 1.000 0.033 in
3 Sublaminate minor semi-axis, b 0.750 0.033 in
4 Sublaminate angle with respect to loads, 30 2 degrees
5 Ply thickness, ¢ 5.56E-3 0.093E-3 in
6 Longitudinal Young’s modulus, E, 19.5E6 0.65E6 psi
7 Transverse Young’s modulus, E, 1.32E6 0.04E6 psi
8 Poisson’s ratio, v, 0.30 0.01 -
9 In-plane shear modulus, G, 1.01E6 0.03E6 psi
10 Longitudinal thermal coeff. of expansion, @, 0.50E-6 0.017E-6 ;"—'_“—,p
11 Transverse thermal coeff. of expansion, a;, 18.0E-6 0.6E-6 ;ﬁp
12 Temperature change, AT -180 20 °F
13 Critical strain energy release rate, G, 0.3 0.05 '—".%'}i
14 Gauge thickness, t, 0.003 0.001 in

Table J-3 Prediction Uncertainty Analysis

UN oN Units

Linear buckling load, N} 619. 58.1 Ibf/in
Nonlinear buckling load, N} 1012. 58.6 Ibf/in
Growth Load, N, 1763. 162. 1bf/in

Load at 1000 microstrain, Niggo 1541. 245. Ibf/in
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Figure J-2 Uncertainty analysis of Experiment 6-2 prediction. Load versus strain
for the sixteen different combinations of input variables.




